Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Adv ; 58: 107930, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35257786

RESUMO

3D bioprinting - the fabrication of geometrically complex 3D structures from biocompatible materials containing living cells using additive manufacturing technologies - is a rapidly developing research field with a broad range of potential applications in fundamental research, regenerative medicine and industry. Currently, research into 3D bioprinting is mostly focused on new therapeutic concepts for the treatment of injured or degenerative tissue by fabrication of functional tissue equivalents or disease models, utilizing mammalian cells. However, 3D bioprinting also has an enormous potential in biotechnology. Due to the defined spatial arrangement of biologically active (non-mammalian) cells in a biomaterial matrix, reaction compartments can be designed according to specific needs, or co-cultures of different cell types can be realized in a highly organized manner to exploit cell-cell interactions. Thus, 3D bioprinting technology can enable new biotechnological concepts, for example, by implementing perfusion systems while protecting shear sensitive cells or performing cascaded bioreactions. Here, we review the use of 3D bioprinting to manufacture defined 3D microenvironments for biotechnological applications using bacteria, fungi, microalgae, plant cells and co-cultures of different cell types. We discuss recent approaches to apply 3D bioprinting in biotechnological applications and - as it is a particular challenge - concepts for the real-time monitoring of the physiological state, growth and metabolic activity of the embedded cells in 3D bioprinted constructs. With these insights, we outline new applications of 3D bioprinting in biotechnology, engineered living materials and space research.


Assuntos
Bioimpressão , Animais , Materiais Biocompatíveis , Biotecnologia , Mamíferos , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais/química
2.
Biofabrication ; 14(1)2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34933296

RESUMO

One of the key challenges in osteochondral tissue engineering is to define specified zones with varying material properties, cell types and biochemical factors supporting locally adjusted differentiation into the osteogenic and chondrogenic lineage, respectively. Herein, extrusion-based core-shell bioprinting is introduced as a potent tool allowing a spatially defined delivery of cell types and differentiation factors TGF-ß3 and BMP-2 in separated compartments of hydrogel strands, and, therefore, a local supply of matching factors for chondrocytes and osteoblasts. Ink development was based on blends of alginate and methylcellulose, in combination with varying concentrations of the nanoclay Laponite whose high affinity binding capacity for various molecules was exploited. Release kinetics of model molecules was successfully tuned by Laponite addition. Core-shell bioprinting was proven to generate well-oriented compartments within one strand as monitored by optical coherence tomography in a non-invasive manner. Chondrocytes and osteoblasts were applied each in the shell while the respective differentiation factors (TGF-ß3, BMP-2) were provided by a Laponite-supported core serving as central factor depot within the strand, allowing directed differentiation of cells in close contact to the core. Experiments with bi-zonal constructs, comprising an osteogenic and a chondrogenic zone, revealed that the local delivery of the factors from the core reduces effects of these factors on the cells in the other scaffold zone. These observations prove the general suitability of the suggested system for co-differentiation of different cell types within a zonal construct.


Assuntos
Bioimpressão , Bioimpressão/métodos , Diferenciação Celular , Impressão Tridimensional , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Fator de Crescimento Transformador beta3/farmacologia
3.
Biofabrication ; 12(2): 025022, 2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-32050179

RESUMO

Systematic analysis of the extrusion process in 3D bioprinting is mandatory for process optimization concerning production speed, shape fidelity of the 3D construct and cell viability. In this study, we applied numerical and analytical modeling to describe the fluid flow inside the printing head based on a Herschel-Bulkley model. The presented analytical calculation method nicely reproduces the results of Computational Fluid Dynamics simulation concerning pressure drop over the printing head and maximal shear parameters at the outlet. An approach with dimensionless flow parameter enables the user to adapt rheological characteristics of a bioink, the printing pressure and needle diameter with regard to processing time, shear sensitivity of the integrated cells, shape fidelity and strand dimension. Bioinks consist of a blend of polymers and cells, which lead to a complex fluid behavior. In the present study, a bioink containing alginate, methylcellulose and agarose (AMA) was used as experimental model to compare the calculated with the experimental pressure gradient. With cultures of an immortalized human mesenchymal stem cell line and plant cells (basil) it was tested how cells influence the flow and how mechanical forces inside the printing needle affect cell viability. Influences on both sides increased with cell (aggregation) size as well as a less spherical shape. This study contributes to a systematic description of the extrusion-based bioprinting process and introduces a general strategy for process design, transferable to other bioinks.


Assuntos
Bioimpressão/métodos , Tinta , Impressão Tridimensional , Alginatos/química , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Sobrevivência Celular , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Metilcelulose/química , Ocimum basilicum/citologia , Células Vegetais/fisiologia , Reologia , Sefarose/química , Resistência ao Cisalhamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...