Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Semin Nucl Med ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38897821

RESUMO

Combination models utilising treatments from two or more therapeutic classes are well established in cancer care. In the new era of theranostic (theragnostic) medicine there is an ongoing need to identify and refine novel combination strategies to optimise multidisciplinary care for conditions commonly encountered in nuclear medicine such as neuroendocrine neoplasms (NEN), prostate cancer (PCa), and thyroid cancer, along with seeking advancements in molecular imaging and therapy techniques for other tumour streams. This concise review explores the background of theranostic monotherapy, established approaches to combination strategies in theranostics, and emerging targeted radionuclide therapies in use or under active investigation, with a focus on Australian-led studies.

2.
EJNMMI Phys ; 11(1): 18, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38372952

RESUMO

BACKGROUND: Terbium-161 (161Tb)-based radionuclide therapy poses an alternative to current Lutetium-177 (177Lu) approaches with the additional benefit of secondary Auger and conversion electron emissions capable of delivering high doses of localised damage to micro-metastases including single cells. Quantitative single-photon emission computed tomography, paired with computed tomography (SPECT/CT), enables quantitative measurement from post-therapy imaging. In view of dosimetry extrapolations, a Tb-161 sensitivity SPECT/CT camera calibration was performed using a method previously validated for 177Lu. METHODS: Serial imaging of a NEMA/IEC body phantom with Tb-161 was performed on SPECT/CT with low-energy high-resolution collimators employing a photopeak of 75 keV with a 20% width. Quantitative stability and recovery coefficients were investigated over a sequence of 19 scans with buffered 161Tb solution at total phantom activity ranging from 70 to 4990 MBq. RESULTS: Sphere recovery coefficients were 0.60 ± 0.05, 0.52 ± 0.07, 0.45 ± 0.07, 0.39 ± 0.07, 0.28 ± 0.08, and 0.20 ± 0.08 for spheres 37, 28, 22, 17, 13, and 10mm, respectively, when considered across all activity and scan durations with dual-energy window scatter correction. Whole-field reconstructed sensitivity was calculated as 1.42E-5 counts per decay. Qualitatively, images exhibited no visual artefacts and were comparable to 177Lu SPECT/CT. CONCLUSIONS: Quantitative SPECT/CT of 161Tb is feasible over a range of activities enabling dosimetry analogous to 177Lu whilst also producing suitable imaging for clinical review. This has been incorporated into a prospective trial of 161Tb-PSMA for men with metastatic prostate cancer.

3.
Front Med (Lausanne) ; 9: 1059122, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36465905

RESUMO

Background: [177Lu]Lu-PSMA is a radioligand therapy used in metastatic castration-resistant prostate cancer (mCRPC). Despite a survival benefit, the responses for many patients receiving [177Lu]Lu-PSMA are not durable, and all patients eventually develop progressive disease. The bone marrow is the most common site of progression. Micrometastases in this area likely receive an inadequate dose of radiation, as the emitted beta-particles from 177Lu travel an average range of 0.7 mm in soft tissue, well beyond the diameter of micrometastases. Radium-223 (223Ra) is a calcium-mimetic and alpha-emitting radionuclide approved for use in men with mCRPC with bone metastases. The range of emitted alpha particles in soft tissue is much shorter (≤100 µm) with high linear energy transfer, likely more lethal for osseous micrometastases. We anticipate that combining a bone-specific alpha-emitter with [177Lu]Lu-PSMA will improve eradication of micrometastatic osseous disease, and thereby lead to higher and longer responses. Methods: This is a single-center, single-arm phase I/II trial evaluating the combination of 223Ra and [177Lu]Lu-PSMA-I&T in men with mCRPC. Thirty-six patients will receive 7.4 GBq of [177Lu]Lu-PSMA-I&T, concurrently with 223Ra in escalating doses (28 kBq/kg - 55kBq/kg), both given intravenously every six weeks for up to six cycles. Eligible patients will have at least two untreated bone metastases visible on bone scintigraphy, and PSMA-positive disease on PSMA PET scan. Patients must have adequate bone marrow and organ function and be willing to undergo tumor biopsies. Patients with discordant disease visible on FDG PET scan (defined as FDG positive disease with minimal or no PSMA expression and no uptake on bone scan) will be excluded. Other key exclusion criteria include the presence of diffuse marrow disease, prior treatment with 223Ra or [177Lu]Lu-PSMA, or more than one prior line of chemotherapy for prostate cancer. The co-primary objectives of this study are to determine the maximum tolerated dose of 223Ra when combined with [177Lu]Lu-PSMA-I&T and the 50% PSA response rate. Conclusion: The AlphaBet trial is a phase I/II study combining 223Ra with [177Lu]Lu-PSMA-I&T in patients with mCRPC. We aim to enroll the first patient in Q3 2022, and recruitment is anticipated to continue for 24 months. Study registration: NCT05383079.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...