Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 12: 733921, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858397

RESUMO

A hallmark of COVID-19 is a hyperinflammatory state associated with severity. Monocytes undergo metabolic reprogramming and produce inflammatory cytokines when stimulated with SARS-CoV-2. We hypothesized that binding by the viral spike protein mediates this effect, and that drugs which regulate immunometabolism could inhibit the inflammatory response. Monocytes stimulated with recombinant SARS-CoV-2 spike protein subunit 1 showed a dose-dependent increase in glycolytic metabolism associated with production of pro-inflammatory cytokines. This response was dependent on hypoxia-inducible factor-1α, as chetomin inhibited glycolysis and cytokine production. Inhibition of glycolytic metabolism by 2-deoxyglucose (2-DG) or glucose deprivation also inhibited the glycolytic response, and 2-DG strongly suppressed cytokine production. Glucose-deprived monocytes rescued cytokine production by upregulating oxidative phosphorylation, an effect which was not present in 2-DG-treated monocytes due to the known effect of 2-DG on suppressing mitochondrial metabolism. Finally, pre-treatment of monocytes with metformin strongly suppressed spike protein-mediated cytokine production and metabolic reprogramming. Likewise, metformin pre-treatment blocked cytokine induction by SARS-CoV-2 strain WA1/2020 in direct infection experiments. In summary, the SARS-CoV-2 spike protein induces a pro-inflammatory immunometabolic response in monocytes that can be suppressed by metformin, and metformin likewise suppresses inflammatory responses to live SARS-CoV-2. This has potential implications for the treatment of hyperinflammation during COVID-19.


Assuntos
COVID-19/imunologia , Metformina/farmacologia , Monócitos/efeitos dos fármacos , Monócitos/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Células Cultivadas , Humanos
2.
Aging Med (Milton) ; 4(1): 47-52, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33738380

RESUMO

OBJECTIVE: Age-associated decreases in immune functions are precipitated by a variety of mechanisms and affect nearly every immune cell subset. In myeloid cells, aging reduces numbers of phagocytes and impairs their functional abilities, including antigen presentation, phagocytosis, and bacterial clearance. Recently, we described an aging effect on several functions in monocytes, including impaired mitochondrial function and reduced inflammatory cytokine gene expression during stimulation with lipopolysaccharide. We hypothesized that circulating factors altered by the aging process underly these changes. Growth differentiation factor-15 (GDF-15) is a distant member of the transforming growth factor-ß superfamily that has known anti-inflammatory effects in macrophages and has been shown to be highly differentially expressed during aging. METHODS: We used biobanked plasma samples to assay circulating GDF-15 levels in subjects from our previous studies and examined correlations between GDF-15 and monocyte function. RESULTS: Monocyte interleukin-6 production due to lipopolysaccharide stimulation was negatively correlated to plasma GDF-15. Additionally, GDF-15 was positively correlated to circulating CD16 + monocyte proportions and negatively correlated to monocyte mitochondrial respiratory capacity. CONCLUSIONS: These results suggest that GDF-15 is a potential circulating factor affecting a variety of monocyte functions and promoting monocyte immunosenescence and thus may be an attractive candidate for therapeutic intervention to ameliorate this.

3.
Immunometabolism ; 2(3): e200026, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32774895

RESUMO

Aging is a complex process that involves dysfunction on multiple levels, all of which seem to converge on inflammation. Macrophages are intimately involved in initiating and resolving inflammation, and their dysregulation with age is a primary contributor to inflammaging-a state of chronic, low-grade inflammation that develops during aging. Among the age-related changes that occur to macrophages are a heightened state of basal inflammation and diminished or hyperactive inflammatory responses, which seem to be driven by metabolic-dependent epigenetic changes. In this review article we provide a brief overview of mitochondrial functions and age-related changes that occur to macrophages, with an emphasis on how the inflammaging environment, senescence, and NAD decline can affect their metabolism, promote dysregulation, and contribute to inflammaging and age-related pathologies.

4.
J Appl Physiol (1985) ; 127(6): 1792-1801, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31725358

RESUMO

The anabolic action of "fast" whey protein on the regulation of postprandial muscle protein synthesis has been established to be short-lived in healthy young adults. We assessed the time course of anabolic signaling activation and stimulation of myofibrillar protein synthesis rates (MPS) after ingestion of a food source that represents a more typical meal-induced pattern of aminoacidemia. Seven young men (age: 22 ± 1 y) underwent repeated blood and biopsy sampling during primed, continuous l-[ring-2H5]phenylalanine and l-[1-13C]leucine tracer infusions and ingested 38 g of l-[1-13C]phenylalanine- and l-[1-13C]leucine-labeled milk protein concentrate. A total of ∼27 ± 4 (∼10 g) and ∼31 ± 1% (∼12 g) of dietary protein-derived amino acids were released in circulation between 0 and 120 min and 120-300 min, respectively, of the postprandial period. l-[ring-2H5]phenylalanine-based MPS increased above basal (0.025 ± 0.008%/h) by ∼75% (0.043 ± 0.009%/h; P = 0.05) between 0 and 120 min and by ∼86% (0.046 ± 0.004%/h; P = 0.02) between 120 and 300 min, respectively. l-[1-13C]leucine-based MPS increased above basal (0.027 ± 0.002%/h) by ∼72% (0.051 ± 0.016%/h; P = 0.10) between 0 and 120 min and by ∼62% (0.047 ± 0.004%/h; P = 0.001) between 120 and 300 min, respectively. Myofibrillar protein-bound l-[1-13C]phenylalanine increased over time (P < 0.001) and equaled 0.004 ± 0.001, 0.008 ± 0.002, 0.017 ± 0.004, and 0.020 ± 0.003 mole percent excess at 60, 120, 180, and 300 min, respectively, of the postprandial period. Milk protein ingestion increased mTORC1 phosphorylation at 120, 180, and 300 min of the postprandial period (all P < 0.05). Our results show that ingestion of 38 g of milk protein results in sustained increases in MPS throughout a 5-h postprandial period in healthy young men.NEW & NOTEWORTHY The stimulation of muscle protein synthesis after whey protein ingestion is short-lived due to its transient systemic appearance of amino acids. Our study characterized the muscle anabolic response to a protein source that results in a more gradual release of amino acids into circulation. Our work demonstrates that a sustained increase in postprandial plasma amino acid availability after milk protein ingestion results in a prolonged stimulation of muscle protein synthesis rates in healthy young men.


Assuntos
Ingestão de Alimentos/fisiologia , Proteínas do Leite/metabolismo , Proteínas Musculares/biossíntese , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Período Pós-Prandial/fisiologia , Biossíntese de Proteínas/fisiologia , Adulto , Aminoácidos/metabolismo , Glicemia/metabolismo , Glicemia/fisiologia , Caseínas/metabolismo , Dieta , Proteínas Alimentares/metabolismo , Humanos , Leucina/metabolismo , Masculino , Miofibrilas/metabolismo , Miofibrilas/fisiologia , Fenilalanina/metabolismo , Proteínas do Soro do Leite/metabolismo , Adulto Jovem
5.
Am J Clin Nutr ; 104(4): 1014-1022, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27604771

RESUMO

BACKGROUND: Excess body fat diminishes muscle protein synthesis rates in response to hyperinsulinemic-hyperaminoacidemic clamps. However, muscle protein synthetic responses after the ingestion of a protein-dense food source across a range of body mass indexes (BMIs) have not been compared. OBJECTIVE: We compared the myofibrillar protein synthetic response and underlying nutrient-sensing mechanisms after the ingestion of lean pork between obese, overweight, and healthy-weight adults. DESIGN: Ten healthy-weight [HW; BMI (in kg/m2): 22.7 ± 0.4], 10 overweight (OW; BMI: 27.1 ± 0.5), and 10 obese (OB; BMI: 35.9 ± 1.3) adults received primed continuous l-[ring-13C6]phenylalanine infusions. Blood and muscle biopsy samples were collected before and after the ingestion of 170 g pork (36 g protein and 3 g fat) to assess skeletal muscle anabolic signaling, amino acid transporters [large neutral and small neutral amino acid transporters (LAT1, SNAT2) and CD98], and myofibrillar protein synthesis. RESULTS: At baseline, OW and OB groups showed greater relative amounts of mammalian target of rapamycin complex 1 (mTORC1) protein than the HW group. Pork ingestion increased mTORC1 phosphorylation only in the HW group (P = 0.001). LAT1 and SNAT2 protein content increased during the postprandial period in all groups (time effect, P < 0.05). Basal myofibrillar protein synthetic responses were similar between groups (P = 0.43). However, myofibrillar protein synthetic responses (0-300 min) were greater in the HW group (1.6-fold; P = 0.005) after pork ingestion than in the OW and OB groups. CONCLUSIONS: There is a diminished myofibrillar protein synthetic response to the ingestion of protein-dense food in overweight and obese adults compared with healthy-weight controls. These data indicate that impaired postprandial myofibrillar protein synthetic response may be an early defect with increasing fat mass, potentially dependent on altered anabolic signals, that reduces muscle sensitivity to food ingestion. This trial was registered at clinicaltrials.gov as NCT02613767.


Assuntos
Tecido Adiposo/metabolismo , Índice de Massa Corporal , Proteínas Alimentares/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Adiposidade , Adulto , Sistemas de Transporte de Aminoácidos/metabolismo , Animais , Dieta , Ingestão de Energia , Feminino , Humanos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Complexos Multiproteicos/metabolismo , Sobrepeso , Período Pós-Prandial , Carne Vermelha , Valores de Referência , Suínos , Serina-Treonina Quinases TOR/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...