Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 18(9): e1007763, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36108064

RESUMO

The rodent vibrissal (whisker) system has been studied for decades as a model of active touch sensing. There are no sensors along the length of a whisker; all sensing occurs at the whisker base. Therefore, a large open question in many neuroscience studies is how an animal could estimate the three-dimensional (3D) location at which a whisker makes contact with an object. In the present work we simulated the shape of a real rat whisker to demonstrate the existence of several unique mappings from triplets of mechanical signals at the whisker base to the three-dimensional whisker-object contact point. We then used high speed video to record whisker deflections as an awake rat whisked against a peg, and used the mechanics resulting from those deflections to extract the contact points along the peg surface. These results demonstrate that measurement of specific mechanical triplets at the base of a biological whisker can enable 3D contact point determination during natural whisking behavior. The approach is viable even though the biological whisker has non-ideal, non-planar curvature, and even given the rat's real-world choices of whisking parameters. Visual intuition for the quality of the approach is provided in a video that shows the contour of the peg gradually emerging during active whisking behavior.


Assuntos
Percepção do Tato , Vigília , Animais , Ratos , Tato , Vibrissas
2.
Soft Robot ; 8(1): 44-58, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32513071

RESUMO

Many mammals use their vibrissae (whiskers) to tactually explore their surrounding environment. Vibrissae are thin tapered structures that transmit mechanical signals to a wealth of mechanical receptors (sensors) located in a follicle at each vibrissal base. A recent study has shown that-provided that the whisker is tapered-three mechanical signals at the base are sufficient to determine the three-dimensional location at which a whisker made contact with an object. However, creating biomimetic tapered whiskers has proved challenging from both materials and manufacturing standpoints. This study develops and characterizes an artificial whisker for use as part of a sensory input device that is a biomimic of the biological rat whisker neurosensory system. A novel manufacturing process termed surface conforming fiber drawing (SCFD) is developed to produce artificial whiskers that meet the requirements to be a successful mechanical and geometric mimic of the biological rat vibrissae. Testing the sensory capabilities of the artificial whisker shows improved performance over previous nontapered filaments. SCFD-manufactured tapered whiskers demonstrate the ability to predict contact point locations with a median distance error of 0.47 cm.


Assuntos
Polímeros , Vibrissas , Vias Aferentes , Animais , Mamíferos , Ratos , Tato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...