Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Data Brief ; 44: 108519, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35990921

RESUMO

The organic fraction of municipal solid waste (OFMSW) is a complex material with different ingredients characterized by varying properties depending on parameters such as season or geographical region of origin. Consequently, studies on OFMSW are hard to compare due to the changing characteristics of the samples. Therefore, this article presents data on the physico-chemical composition of standardized, recipe-based OFMSW components divided into the categories "Paper", "Green waste" and "Food waste", and further subcategories. Data presented in this article include (1) dry matter, (2) organic dry matter, (3) C, H and N concentrations, (4) gross calorific values, (5) ash melting behavior, (6) specific biogas yield and (7) methane concentration. An application example of an experiment requiring the same starting material properties is represented by storage experiments, as performed within the original scientific article [1]. Thus, this Data in Brief article also provides additional data on recipe-based storage experiments complementing the original article. The datasets cannot only be used to estimate biowaste potentials but they can also be used for the design and execution of experiments that require standardized OFMSW samples.

2.
Waste Manag ; 144: 366-375, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35439687

RESUMO

Food waste (FW) from households represents a major fraction of municipal waste and it is often collected in separate biowaste bins. Until waste collection is carried out, storage conditions in the biowaste bin influence FW properties. To draw conclusions for an optimized waste utilization in anaerobic digestion (AD), the aim of this study was to evaluate the impact of storage duration (20 to 40 days) and temperature (5 °C and 20 °C) on inherent energy potentials of household FW during aerobic and anaerobic storage. Therefore, physico-chemical parameters of recipe-based FW samples with reproducible initial compositions were monitored. After 20 days of aerobic storage, water contents (WC) were reduced from 61.9% to 39.5% (20 °C) and from 63.9% to 50.3% (5 °C) while organic dry matter (oDM) concentrations were lowered by 4.3% (20 °C) and 1.1% (5 °C). Increased pH-values of 6.6 (initially 5.5) were only measured for FW stored aerobically at 20 °C. In total, the energy potential was decreased by 31% (20 °C) and by 16% (5 °C). Thus, storage temperature and duration are crucial parameters for optimized aerobic FW storage leading to higher energy yields in AD. Instead, anaerobic storage of FW decreased pH-values to <5 while increasing WC in all samples (up to 67% at 20 °C). As oDM concentrations were preserved almost completely, the energy potential losses were only marginal proving that energy contents of FW could be preserved at household level. Consequently, energy yields in AD of FW could be increased through anaerobic storage conditions.


Assuntos
Alimentos , Eliminação de Resíduos , Anaerobiose , Reatores Biológicos , Metano , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...