Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Oncol ; 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38880659

RESUMO

Interferon regulatory factor 4 (IRF4) was initially identified as a key controller in lymphocyte differentiation and function, and subsequently as a dependency factor and therapy target in lymphocyte-derived cancers. In melanocytes, IRF4 takes part in pigmentation. Although genetic studies have implicated IRF4 in melanoma, how IRF4 functions in melanoma cells has remained largely elusive. Here, we confirmed prevalent IRF4 expression in melanoma and showed that high expression is linked to dependency in cells and mortality in patients. Analysis of genes activated by IRF4 uncovered, as a novel target category, epigenetic silencing factors involved in DNA methylation (DNMT1, DNMT3B, UHRF1) and histone H3K27 methylation (EZH2). Consequently, we show that IRF4 controls the expression of tumour suppressor genes known to be silenced by these epigenetic modifications, for instance cyclin-dependent kinase inhibitors CDKN1A and CDKN1B, the PI3-AKT pathway regulator PTEN, and primary cilium components. Furthermore, IRF4 modulates activity of key downstream oncogenic pathways, such as WNT/ß-catenin and AKT, impacting cell proliferation and survival. Accordingly, IRF4 modifies the effectiveness of pertinent epigenetic drugs on melanoma cells, a finding that encourages further studies towards therapeutic targeting of IRF4 in melanoma.

2.
Blood ; 125(1): 124-32, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25359993

RESUMO

Anaplastic large cell lymphoma (ALCL) is a distinct entity of T-cell lymphoma that can be divided into 2 subtypes based on the presence of translocations involving the ALK gene (ALK(+) and ALK(-) ALCL). The interferon regulatory factor 4 (IRF4) is known to be highly expressed in both ALK(+) and ALK(-) ALCLs. However, the role of IRF4 in the pathogenesis of these lymphomas remains unclear. Here we show that ALCLs of both subtypes are addicted to IRF4 signaling, as knockdown of IRF4 by RNA interference was toxic to ALCL cell lines in vitro and in ALCL xenograft mouse models in vivo. Gene expression profiling after IRF4 knockdown demonstrated a significant downregulation of a variety of known MYC target genes. Furthermore, our analyses revealed that MYC is a primary target of IRF4, identifying a novel regulatory mechanism of MYC expression and its target gene network in ALCL. MYC, itself, is essential for ALCL survival, as both knockdown of MYC and pharmacologic inhibition of MYC signaling were toxic to ALCL cell lines. Collectively, our results demonstrate that ALCLs are dependent on IRF4 and MYC signaling and that MYC may represent a promising target for future therapies.


Assuntos
Regulação Neoplásica da Expressão Gênica , Fatores Reguladores de Interferon/metabolismo , Linfoma Anaplásico de Células Grandes/genética , Linfoma Anaplásico de Células Grandes/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Feminino , Perfilação da Expressão Gênica , Humanos , Linfoma/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Transplante de Neoplasias , Interferência de RNA , Retroviridae/metabolismo , Transdução de Sinais
3.
Cell ; 155(5): 1022-33, 2013 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-24267888

RESUMO

Sequence polymorphisms linked to human diseases and phenotypes in genome-wide association studies often affect noncoding regions. A SNP within an intron of the gene encoding Interferon Regulatory Factor 4 (IRF4), a transcription factor with no known role in melanocyte biology, is strongly associated with sensitivity of skin to sun exposure, freckles, blue eyes, and brown hair color. Here, we demonstrate that this SNP lies within an enhancer of IRF4 transcription in melanocytes. The allele associated with this pigmentation phenotype impairs binding of the TFAP2A transcription factor that, together with the melanocyte master regulator MITF, regulates activity of the enhancer. Assays in zebrafish and mice reveal that IRF4 cooperates with MITF to activate expression of Tyrosinase (TYR), an essential enzyme in melanin synthesis. Our findings provide a clear example of a noncoding polymorphism that affects a phenotype by modulating a developmental gene regulatory network.


Assuntos
Fatores Reguladores de Interferon/metabolismo , Polimorfismo de Nucleotídeo Único , Animais , Sequência de Bases , Elementos Facilitadores Genéticos , Humanos , Fatores Reguladores de Interferon/química , Fatores Reguladores de Interferon/genética , Melanócitos/metabolismo , Camundongos , Dados de Sequência Molecular , Pigmentação , Transdução de Sinais , Fator de Transcrição AP-2/química , Fator de Transcrição AP-2/metabolismo , Peixe-Zebra
4.
Cancer Cell ; 23(4): 435-49, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23541952

RESUMO

We performed a loss-of-function RNA interference screen to define therapeutic targets in multiple myeloma, a genetically diverse plasma cell malignancy. Unexpectedly, we discovered that all myeloma lines require caspase-10 for survival irrespective of their genetic abnormalities. The transcription factor IRF4 induces both caspase-10 and its associated protein cFLIPL in myeloma, generating a protease that does not induce apoptosis but rather blocks an autophagy-dependent cell death pathway. Caspase-10 inhibits autophagy by cleaving the BCL2-interacting protein BCLAF1, itself a strong inducer of autophagy that acts by displacing beclin-1 from BCL2. While myeloma cells require a basal level of autophagy for survival, caspase-10 tempers this response to avoid cell death. Drugs that disrupt this vital balance may have therapeutic potential in myeloma.


Assuntos
Autofagia/fisiologia , Caspase 10/genética , Caspase 10/metabolismo , Mieloma Múltiplo/enzimologia , Mieloma Múltiplo/patologia , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Autofagia/efeitos dos fármacos , Inibidores de Caspase/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Técnicas de Silenciamento de Genes , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Interferência de RNA
5.
Cancer Cell ; 21(6): 723-37, 2012 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-22698399

RESUMO

Knowledge of oncogenic mutations can inspire therapeutic strategies that are synthetically lethal, affecting cancer cells while sparing normal cells. Lenalidomide is an active agent in the activated B cell-like (ABC) subtype of diffuse large B cell lymphoma (DLBCL), but its mechanism of action is unknown. Lenalidomide kills ABC DLBCL cells by augmenting interferon ß (IFNß) production, owing to the oncogenic MYD88 mutations in these lymphomas. In a cereblon-dependent fashion, lenalidomide downregulates IRF4 and SPIB, transcription factors that together prevent IFNß production by repressing IRF7 and amplify prosurvival NF-κB signaling by transactivating CARD11. Blockade of B cell receptor signaling using the BTK inhibitor ibrutinib also downregulates IRF4 and consequently synergizes with lenalidomide in killing ABC DLBCLs, suggesting attractive therapeutic strategies.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas Adaptadoras de Transdução de Sinal , Adenina/análogos & derivados , Animais , Western Blotting , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Humanos , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Interferon beta/genética , Interferon beta/metabolismo , Interferon beta/farmacologia , Lenalidomida , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , NF-kappa B/genética , NF-kappa B/metabolismo , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Piperidinas , Pirazóis/administração & dosagem , Pirimidinas/administração & dosagem , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Talidomida/administração & dosagem , Talidomida/análogos & derivados , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Carga Tumoral/genética , Ubiquitina-Proteína Ligases
6.
Cancer Cell ; 18(6): 590-605, 2010 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-21156283

RESUMO

Chromosome band 9p24 is frequently amplified in primary mediastinal B cell lymphoma (PMBL) and Hodgkin lymphoma (HL). To identify oncogenes in this amplicon, we screened an RNA interference library targeting amplicon genes and thereby identified JAK2 and the histone demethylase JMJD2C as essential genes in these lymphomas. Inhibition of JAK2 and JMJD2C cooperated in killing these lymphomas by decreasing tyrosine 41 phosphorylation and increasing lysine 9 trimethylation of histone H3, promoting heterochromatin formation. MYC, a major target of JAK2-mediated histone phosphorylation, was silenced after JAK2 and JMJD2C inhibition, with a corresponding increase in repressive chromatin. Hence, JAK2 and JMJD2C cooperatively remodel the PMBL and HL epigenome, offering a mechanistic rationale for the development of JAK2 and JMJD2C inhibitors in these diseases.


Assuntos
Epigênese Genética , Doença de Hodgkin/genética , Linfoma de Células B/genética , Neoplasias do Mediastino/genética , Linhagem Celular Tumoral , Cromossomos Humanos Par 9 , Histonas/metabolismo , Doença de Hodgkin/patologia , Humanos , Janus Quinase 2/antagonistas & inibidores , Janus Quinase 2/genética , Janus Quinase 2/fisiologia , Histona Desmetilases com o Domínio Jumonji/antagonistas & inibidores , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/fisiologia , Linfoma de Células B/patologia , Fosforilação
7.
Clin Cancer Res ; 15(9): 2954-61, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19383829

RESUMO

IRF4, a member of the Interferon Regulatory Factor (IRF) family of transcription factors, is expressed in cells of the immune system, where it transduces signals from various receptors to activate or repress gene expression. IRF4 expression is a key regulator of several steps in lymphoid-, myeloid-, and dendritic-cell differentiation, including the differentiation of mature B cells into antibody-secreting plasma cells. IRF4 expression is also associated with many lymphoid malignancies, with recent evidence pointing to an essential role in multiple myeloma, a malignancy of plasma cells. Interference with IRF4 expression is lethal to multiple myeloma cells, irrespective of their genetic etiology, making IRF4 an "Achilles' heel" that may be exploited therapeutically.


Assuntos
Diferenciação Celular/fisiologia , Imunidade/fisiologia , Fatores Reguladores de Interferon/fisiologia , Mieloma Múltiplo/metabolismo , Animais , Células Dendríticas/citologia , Humanos , Fatores Reguladores de Interferon/antagonistas & inibidores , Linfócitos/citologia , Mieloma Múltiplo/patologia , Células Mieloides/citologia
8.
Proc Natl Acad Sci U S A ; 105(36): 13520-5, 2008 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-18765795

RESUMO

Gene-expression profiling has been used to define 3 molecular subtypes of diffuse large B-cell lymphoma (DLBCL), termed germinal center B-cell-like (GCB) DLBCL, activated B-cell-like (ABC) DLBCL, and primary mediastinal B-cell lymphoma (PMBL). To investigate whether these DLBCL subtypes arise by distinct pathogenetic mechanisms, we analyzed 203 DLBCL biopsy samples by high-resolution, genome-wide copy number analysis coupled with gene-expression profiling. Of 272 recurrent chromosomal aberrations that were associated with gene-expression alterations, 30 were used differentially by the DLBCL subtypes (P < 0.006). An amplicon on chromosome 19 was detected in 26% of ABC DLBCLs but in only 3% of GCB DLBCLs and PMBLs. A highly up-regulated gene in this amplicon was SPIB, which encodes an ETS family transcription factor. Knockdown of SPIB by RNA interference was toxic to ABC DLBCL cell lines but not to GCB DLBCL, PMBL, or myeloma cell lines, strongly implicating SPIB as an oncogene involved in the pathogenesis of ABC DLBCL. Deletion of the INK4a/ARF tumor suppressor locus and trisomy 3 also occurred almost exclusively in ABC DLBCLs and was associated with inferior outcome within this subtype. FOXP1 emerged as a potential oncogene in ABC DLBCL that was up-regulated by trisomy 3 and by more focal high-level amplifications. In GCB DLBCL, amplification of the oncogenic mir-17-92 microRNA cluster and deletion of the tumor suppressor PTEN were recurrent, but these events did not occur in ABC DLBCL. Together, these data provide genetic evidence that the DLBCL subtypes are distinct diseases that use different oncogenic pathways.


Assuntos
Linfoma Difuso de Grandes Células B/classificação , Linfoma Difuso de Grandes Células B/genética , Biópsia , Sobrevivência Celular , Aberrações Cromossômicas , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Genoma Humano/genética , Humanos , Linfoma Difuso de Grandes Células B/metabolismo , Linfoma Difuso de Grandes Células B/patologia , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Prognóstico , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
9.
Nature ; 454(7201): 226-31, 2008 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-18568025

RESUMO

The transcription factor IRF4 (interferon regulatory factor 4) is required during an immune response for lymphocyte activation and the generation of immunoglobulin-secreting plasma cells. Multiple myeloma, a malignancy of plasma cells, has a complex molecular aetiology with several subgroups defined by gene expression profiling and recurrent chromosomal translocations. Moreover, the malignant clone can sustain multiple oncogenic lesions, accumulating genetic damage as the disease progresses. Current therapies for myeloma can extend survival but are not curative. Hence, new therapeutic strategies are needed that target molecular pathways shared by all subtypes of myeloma. Here we show, using a loss-of-function, RNA-interference-based genetic screen, that IRF4 inhibition is toxic to myeloma cell lines, regardless of transforming oncogenic mechanism. Gene expression profiling and genome-wide chromatin immunoprecipitation analysis uncovered an extensive network of IRF4 target genes and identified MYC as a direct target of IRF4 in activated B cells and myeloma. Unexpectedly, IRF4 was itself a direct target of MYC transactivation, generating an autoregulatory circuit in myeloma cells. Although IRF4 is not genetically altered in most myelomas, they are nonetheless addicted to an aberrant IRF4 regulatory network that fuses the gene expression programmes of normal plasma cells and activated B cells.


Assuntos
Fatores Reguladores de Interferon/metabolismo , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Animais , Linfócitos B/metabolismo , Linfócitos B/patologia , Sobrevivência Celular , Transformação Celular Neoplásica/genética , Células Cultivadas , Imunoprecipitação da Cromatina , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Genes myc/genética , Humanos , Fatores Reguladores de Interferon/deficiência , Fatores Reguladores de Interferon/genética , Camundongos , Mieloma Múltiplo/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Interferência de RNA , Ativação Transcricional
10.
Artigo em Inglês | MEDLINE | ID: mdl-16568953

RESUMO

Regulation of chromatin structure is important for the control of DNA-templated processes such as gene expression and silencing, and its dysregulation is implicated in diverse developmental and cell proliferative defects such as tumorigenesis. Covalent post-translational modifications of histones are one of the prominent means to regulate the chromatin structure. Here, we summarize findings from our lab and others regarding the interactions between different covalent modifications of histones in the budding yeast Saccharomyces cerevisiae. First, we describe the effect of histone H3 phosphorylation at residue serine 10 in transcriptional gene activation, and its histone H3 acetylation dependent and independent modes of action and downstream effects on TATA-binding protein (TBP) recruitment. Further, we review how ubiquitylation of histone H2B and its deubiquitylation by ubiquitin proteases Ubp8 and Ubp10 regulate histone H3 methylations, and consequently affect co-activator-dependent gene transcription and silent chromatin, respectively.


Assuntos
Cromatina/metabolismo , Histonas/metabolismo , Processamento de Proteína Pós-Traducional/genética , Elementos Reguladores de Transcrição/genética , Saccharomyces cerevisiae/genética , Acetilação , Cromatina/genética , Regulação Fúngica da Expressão Gênica/genética , Inativação Gênica/fisiologia , Histonas/genética , Metilação , Saccharomyces cerevisiae/metabolismo , Ativação Transcricional , Ubiquitina/metabolismo
11.
Mol Cell ; 17(4): 585-94, 2005 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-15721261

RESUMO

Low levels of histone covalent modifications are associated with gene silencing at telomeres and other regions in the yeast S. cerevisiae. Although the histone deacetylase Sir2 maintains low acetylation, mechanisms responsible for low H2B ubiquitylation and low H3 methylation are unknown. Here, we show that the ubiquitin protease Ubp10 targets H2B for deubiquitylation, helping to localize Sir2 to the telomere. Ubp10 exhibits reciprocal Sir2-dependent preferential localization proximal to telomeres, where Ubp10 serves to maintain low H2B Lys123 ubiquitylation in this region and, through previously characterized crosstalk, maintains low H3 Lys4 and Lys79 methylation in a slightly broader region. Ubp10 is also localized to the rDNA locus, a second silenced domain, where it similarly maintains low histone methylation. We compare Ubp10 to Ubp8, the SAGA-associated H2B deubiquitylase involved in gene activation, and show that telomeric and gene-silencing functions are specific to Ubp10. Our results suggest that these H2B-deubiquitylating enzymes have distinct genomic functions.


Assuntos
Regulação Fúngica da Expressão Gênica/fisiologia , Inativação Gênica , Histona Desacetilases/fisiologia , Histonas/metabolismo , Proteínas Nucleares/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/fisiologia , Sirtuínas/fisiologia , Telômero/fisiologia , Ubiquitina/metabolismo , Acetilação , Imunoprecipitação da Cromatina , DNA Ribossômico , Regulação para Baixo , Lisina/metabolismo , Metilação , Complexo de Endopeptidases do Proteassoma , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sirtuína 2 , Transcrição Gênica , Ativação Transcricional , Ubiquitina Tiolesterase
12.
Mol Cell Biol ; 25(3): 1162-72, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15657441

RESUMO

The SAGA complex is a multisubunit protein complex involved in transcriptional regulation in Saccharomyces cerevisiae. SAGA combines proteins involved in interactions with DNA-bound activators and TATA-binding protein (TBP), as well as enzymes for histone acetylation (Gcn5) and histone deubiquitylation (Ubp8). We recently showed that H2B ubiquitylation and Ubp8-mediated deubiquitylation are both required for transcriptional activation. For this study, we investigated the interaction of Ubp8 with SAGA. Using mutagenesis, we identified a putative zinc (Zn) binding domain within Ubp8 as being critical for the association with SAGA. The Zn binding domain is required for H2B deubiquitylation and for growth on media requiring Ubp8's function in gene activation. Furthermore, we identified an 11-kDa subunit of SAGA, Sgf11, and showed that it is required for the Ubp8 association with SAGA and for H2B deubiquitylation. Different approaches indicated that the functions of Ubp8 and Sgf11 are related and separable from those of other components of SAGA. In particular, the profiles of Ubp8 and Sgf11 deletions were remarkably similar in microarray analyses and synthetic genetic interactions and were distinct from those of the Spt3 and Spt8 subunits of SAGA, which are involved in TBP regulation. These data indicate that Ubp8 and Sgf11 likely represent a new functional module within SAGA that is involved in gene regulation through H2B deubiquitylation.


Assuntos
Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina/metabolismo , Sequência de Aminoácidos , Proteínas de Ligação a DNA/metabolismo , Regulação Fúngica da Expressão Gênica/fisiologia , Histona Acetiltransferases , Análise em Microsséries , Dados de Sequência Molecular , Mutação/genética , Proteínas Quinases/metabolismo , Ativação Transcricional , Zinco/metabolismo
13.
Genes Dev ; 17(21): 2648-63, 2003 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-14563679

RESUMO

Gene activation and repression regulated by acetylation and deacetylation represent a paradigm for the function of histone modifications. We provide evidence that, in contrast, histone H2B monoubiquitylation and its deubiquitylation are both involved in gene activation. Substitution of the H2B ubiquitylation site at Lys 123 (K123) lowered transcription of certain genes regulated by the acetylation complex SAGA. Gene-associated H2B ubiquitylation was transient, increasing early during activation, and then decreasing coincident with significant RNA accumulation. We show that Ubp8, a component of the SAGA acetylation complex, is required for SAGA-mediated deubiquitylation of histone H2B in vitro. Loss of Ubp8 in vivo increased both gene-associated and overall cellular levels of ubiquitylated H2B. Deletion of Ubp8 lowered transcription of SAGA-regulated genes, and the severity of this defect was exacerbated by codeletion of the Gcn5 acetyltransferase within SAGA. In addition, disruption of either ubiquitylation or Ubp8-mediated deubiquitylation of H2B resulted in altered levels of gene-associated H3 Lys 4 methylation and Lys 36 methylation, which have both been linked to transcription. These results suggest that the histone H2B ubiquitylation state is dynamic during transcription, and that the sequence of histone modifications helps to control transcription.


Assuntos
Regulação da Expressão Gênica , Histonas/metabolismo , Ubiquitina/metabolismo , Lisina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transcrição Gênica , Ativação Transcricional
14.
Nature ; 419(6905): 407-11, 2002 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-12353038

RESUMO

Lysine methylation of histones in vivo occurs in three states: mono-, di- and tri-methyl. Histone H3 has been found to be di-methylated at lysine 4 (K4) in active euchromatic regions but not in silent heterochromatic sites. Here we show that the Saccharomyces cerevisiae Set1 protein can catalyse di- and tri-methylation of K4 and stimulate the activity of many genes. Using antibodies that discriminate between the di- and tri-methylated state of K4 we show that di-methylation occurs at both inactive and active euchromatic genes, whereas tri-methylation is present exclusively at active genes. It is therefore the presence of a tri-methylated K4 that defines an active state of gene expression. These findings establish the concept of methyl status as a determinant for gene activity and thus extend considerably the complexity of histone modifications.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Regulação Fúngica da Expressão Gênica , Genes Fúngicos/genética , Histonas/metabolismo , Lisina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Anticorpos , Proteínas de Ligação a DNA/genética , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Histona-Lisina N-Metiltransferase , Histonas/química , Histonas/imunologia , Inositol/farmacologia , Metionina/farmacologia , Metilação/efeitos dos fármacos , Saccharomyces cerevisiae/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...