Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Drug Test Anal ; 15(3): 314-323, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36445200

RESUMO

Success in gene therapy in treating human disease makes this technology attractive to enhance athletic performance, creating the need for gene doping detection. In 2021, World Anti-Doping Agency (WADA) approved the first gene doping test. Here, we describe a new method to detect doping with four additional genes, follistatin, growth hormone 1, growth hormone-releasing hormone and insulin-like growth factor 1, that may improve performance by increasing muscle size and strength. The method utilises four hydrolysis probe-based polymerase chain reaction (PCR) assays that target the transgenes based on the coding sequence of the four endogenous genes. The assays are specific, reproducible and capable to detect five copies of transgene in the presence of very similar endogenous gene in 25,000 times excess. To underpin reliable and comparable routine method performance by doping testing laboratories, a synthetic reference material for the method was designed and generated following the ISO Guide 35. The complete method was validated in blood samples using plasma as extraction matrix and QIAamp DNA blood midi DNA extraction kit. All blood samples from different donors (n = 8) simulated to be negative or positive (1500 transgene copies spiked per millilitre of blood) for the transgenes were reported correctly. The new method that targets four additional genes will extend the capabilities of laboratories involved in doping control to protect athletes' health, fairness and equality.


Assuntos
Atletas , Dopagem Esportivo , Humanos , Transgenes , Reação em Cadeia da Polimerase/métodos , Terapia Genética , DNA
2.
Anal Chem ; 91(19): 12268-12274, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31465204

RESUMO

High accuracy, reliability, and reproducibility of genetic analyses in various applications require optimized and validated protocols and standards. Optimal procedures for storing the genetic material extracted from biological samples are equally important. In this study, we investigated the stability of dilute (4000 cp/µL, nominal concentration, equivalent to 0.02 ng/mL) DNA solutions stored at 4, -20, and -80 °C in the presence or absence of nucleic acid carriers. As representative examples, we used different formulations of a linearized plasmid DNA solution considered for characterization as reference materials (RMs) for specific applications. Employing droplet digital PCR, a highly accurate and precise method for quantification of nucleic acid not requiring a calibrant, we demonstrated that inclusion of a carrier nucleic acid in the formulation (at 50 ng/µL) improved the plasmid stability at -20 and -80 °C. For the case of a DNA standard used in real-time PCR assays for human erythropoietin gene, cDNA or transcript, we found that inclusion of yeast RNA in the formulation was preferred over salmon testes DNA as it had no effect on PCR amplification and provided the lowest relative expanded uncertainty for the characterized RM. RNA background may also be preferred as it is applicable to a broader range of DNA RMs. Our findings are important in production of reliable, stable DNA standards, including DNA RMs. These results can be used when selecting protocols for stable storage of DNA either extracted from biological samples or synthesized in a laboratory.


Assuntos
DNA/química , Reação em Cadeia da Polimerase em Tempo Real/normas , Animais , DNA/normas , Eritropoetina/genética , Congelamento , Humanos , Plasmídeos , Controle de Qualidade , Padrões de Referência , Reprodutibilidade dos Testes , Salmão/genética , Temperatura
3.
Anal Chem ; 91(6): 4124-4131, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30775910

RESUMO

Digital polymerase chain reaction (dPCR) is increasingly being adopted by reference material producers and metrology institutes for value assignment, and for homogeneity and stability studies of nucleic acid reference materials. A reference method procedure should fulfill several requirements, and the uncertainty and biases should be completely understood. A bias in target concentration when inaccurate droplet volume is used in the droplet dPCR measurement equation has previously been documented. In this study, we characterize both intrawell and interwell droplet volume variability using optical microscopy and determine the impact of these two sources of variability on target concentration estimates. A small optical distortion across the image was measured which, without correction, biased droplet volume measurements. Longitudinal monitoring of interwell droplet volume over 39 weeks using several lots of Mastermix demonstrated a mean droplet volume of 0.786 nL and intermediate precision of 1.7%. The frequency distribution of intrawell droplet volumes varied. Some wells displayed a skewed distribution which resulted in a small bias in estimated target concentration for a simulated dPCR with target concentrations of between 62 and 8000 copies µL-1. The size and direction of this bias was influenced by the distribution pattern of the droplet volumes within the well. The proportion of Mastermix in dPCR mix affected droplet volume. A pipetting error of 10% during mixing of the premix and Mastermix resulted in a 2.6% change in droplet volume and, consequently, a bias in concentration measurements highlighting the advantages of gravimetric preparation of dPCR mixes for high accuracy measurements.


Assuntos
Variações do Número de Cópias de DNA , Ácidos Nucleicos/análise , Reação em Cadeia da Polimerase/métodos , Humanos
4.
Methods Mol Biol ; 1768: 11-24, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29717435

RESUMO

Use of digital polymerase chain reaction (dPCR) technology is rapidly growing and diversifying into a range of areas in life science. The release of dPCR commercial systems has facilitated access, leading to recognition of the potential advantages compared to previous quantitative PCR technologies, and the scope for novel applications. The capability of dPCR to deliver unprecedented levels of precision, accuracy, and resolution in quantification of nucleic acids has triggered a strong interest by academia and the life sciences industry in use of this technology as a molecular diagnostic tool. However, the performance of dPCR, as for a "classical" PCR assay, essentially still relies on enzyme-based amplification of nucleic acid using specific reagents and instrumentation. This chapter describes basic concepts, key properties, and important factors to consider for the verification and validation of dPCR measurements.


Assuntos
Ácidos Nucleicos/isolamento & purificação , Patologia Molecular/métodos , Reação em Cadeia da Polimerase/métodos , Estudos de Validação como Assunto , Patologia Molecular/instrumentação , Patologia Molecular/normas , Reação em Cadeia da Polimerase/instrumentação , Reação em Cadeia da Polimerase/normas
5.
Anal Chem ; 89(21): 11243-11251, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-28968098

RESUMO

Use of droplet digital PCR technology (ddPCR) is expanding rapidly in the diversity of applications and number of users around the world. Access to relatively simple and affordable commercial ddPCR technology has attracted wide interest in use of this technology as a molecular diagnostic tool. For ddPCR to effectively transition to a molecular diagnostic setting requires processes for method validation and verification and demonstration of reproducible instrument performance. In this study, we describe the development and characterization of a DNA reference material (NMI NA008 High GC reference material) comprising a challenging methylated GC-rich DNA template under a novel 96-well microplate format. A scalable process using high precision acoustic dispensing technology was validated to produce the DNA reference material with a certified reference value expressed in amount of DNA molecules per well. An interlaboratory study, conducted using blinded NA008 High GC reference material to assess reproducibility among seven independent laboratories demonstrated less than 4.5% reproducibility relative standard deviation. With the exclusion of one laboratory, laboratories had appropriate technical competency, fully functional instrumentation, and suitable reagents to perform accurate ddPCR based DNA quantification measurements at the time of the study. The study results confirmed that NA008 High GC reference material is fit for the purpose of being used for quality control of ddPCR systems, consumables, instrumentation, and workflow.


Assuntos
DNA/normas , Reação em Cadeia da Polimerase/normas , Padrões de Referência , Reprodutibilidade dos Testes
6.
Biomol Detect Quantif ; 10: 47-49, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27990349

RESUMO

Accurate, reliable and reproducible quantification of nucleic acids (DNA/RNA) is important for many diagnostic applications and in routine laboratory testing, for example, for pathogen detection and detection of genetically modified organisms in food. To ensure reliable nucleic acid measurement, reference materials (RM) that are accurately characterised for quantity of target nucleic acid sequences (in copy number or copy number concentration) with a known measurement uncertainty are needed. Recently developed digital polymerase chain reaction (dPCR) technology allows absolute and accurate quantification of nucleic acid target sequences without need for a reference standard. Due to these properties, this technique has the potential to not only improve routine quantitative nucleic acid analysis, but also to be used as a reference method for certification of nucleic acid RM. The article focuses on the use and application of both dPCR and RMs for accurate quantification.

7.
BMC Med Genomics ; 7: 44, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25027169

RESUMO

BACKGROUND: The role of copy number variation (CNV) has been poorly explored in essential hypertension in part due to technical difficulties in accurately assessing absolute numbers of DNA copies. Droplet digital PCR (ddPCR) provides a powerful new approach to CNV quantitation. The aim of our study was to investigate whether CNVs located in regions previously associated with blood pressure (BP) variation in genome-wide association studies (GWAS) were associated with essential hypertension by the use of ddPCR. METHODS: Using a "power of extreme" approach, we quantified nucleic acids using ddPCR in white subjects from the Victorian Family Heart Study with extremely high (n = 96) and low (n = 92) SBP, providing power equivalent to 1714 subjects selected at random. RESULTS: A deletion of the CNVs esv27061 and esv2757747 on chromosome 1p13.2 was significantly more prevalent in extreme high BP subjects after adjustment for age, body mass index and sex (12.6% vs. 2.2%; P = 0.013). CONCLUSIONS: Our data suggests that CNVs within regions identified in previous GWAS may play a role in human essential hypertension.


Assuntos
Variações do Número de Cópias de DNA , Estudo de Associação Genômica Ampla , Hipertensão/genética , Adulto , Pressão Sanguínea/genética , Hipertensão Essencial , Feminino , Genótipo , Humanos , Hipertensão/fisiopatologia , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase
8.
Anal Bioanal Chem ; 406(26): 6529-37, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24948089

RESUMO

Hypermethylation at promoter regions of tumour suppressor genes is diagnostic for many cancers. Many genomic regions that may be the targets for clinical diagnostic assays have been identified through use of measuring systems reliant on bisulphite conversion, but few of these promising markers are in clinical use. The comparability of a widely used DNA methylation measuring system involving bisulphite conversion was evaluated by supplying three experienced centres with methylated DNA reference material mixtures that were independently prepared and characterised by mass spectrometry and high-pressure liquid chromatography. A replication scheme was designed to evaluate reproducibility of key analytical steps within and between laboratories by regression analysis. In general, methylation was underestimated and methylation ratio values were highly variable. The difference in methylation ratio between CpG sites was the key contributor to variable results. The CpG site effect followed a similar pattern at all centres and at all methylation levels examined indicating that sequence context had a major effect on methylation ratio measurement using the bisulphite conversion process. The magnitude of underestimation combined with the variability of measurements between CpG sites compromises the concept of measuring genomic regional methylation by averaging the methylation ratios of many CpG sites. There were no significant differences in replicate bisulphite conversions or sample work-up and instrument analysis at each centre thus making this technique suitable for comparative intralaboratory investigations. However, it may not be suitable for a routine diagnostic assay without extensive standardisation efforts.


Assuntos
Metilação de DNA , DNA/genética , Genes p16 , Neoplasias/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Sequência de Bases , Cromatografia Líquida de Alta Pressão/métodos , Ilhas de CpG , DNA/análise , Humanos , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Reprodutibilidade dos Testes , Análise de Sequência de DNA/métodos , Sulfitos/química
9.
Clin Chem ; 60(7): 995-1003, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24829271

RESUMO

BACKGROUND: DNA methylation biomarkers capable of diagnosis and subtyping have been found for many cancers. Fifteen such markers have previously been identified for pediatric acute lymphoblastic leukemia (ALL). Validation of these markers is necessary to assess their clinical utility for molecular diagnostics. Substantial efficiencies could be achieved with these DNA methylation markers for disease tracking with potential to replace patient-specific genetic testing. METHODS: We evaluated DNA methylation of promoter regions of TLX3 (T-cell leukemia homeobox) and FOXE3 (forkhead box E3) in bone marrow biopsies from 197 patients classified as leukemic (n = 95) or clear of the disease (n = 102) by MALDI-TOF. Using a single nucleotide extension assay (methylSABER), we tested 10 bone marrow biopsies collected throughout the course of patient chemotherapy. Using reference materials, diagnostic thresholds and limits of detection were characterized for both methods. RESULTS: Reliable detection of DNA methylation of TLX3 and FOXE3 segregated ALL from those clear of disease with minimal false-negative and false-positive results. The limit of detection with MALDI-TOF was 1000-5000 copies of methylated allele. For methylSABER, the limit of detection was 10 copies of methylated TLX3, which enabled monitoring of minimal residual disease in ALL patients. CONCLUSIONS: Mass spectrometry procedures can be used to regionally multiplex and detect rare DNA methylation events, establish DNA methylation loci as clinically applicable biomarkers for disease diagnosis, and track pediatric ALL.


Assuntos
Metilação de DNA , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Adolescente , Estudos de Casos e Controles , Criança , Pré-Escolar , Reações Falso-Negativas , Reações Falso-Positivas , Feminino , Fatores de Transcrição Forkhead/genética , Dosagem de Genes , Marcadores Genéticos , Proteínas de Homeodomínio/genética , Humanos , Lactente , Limite de Detecção , Masculino , Neoplasia Residual/diagnóstico , Neoplasia Residual/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Regiões Promotoras Genéticas , Padrões de Referência , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
10.
Hum Gene Ther Methods ; 24(6): 345-54, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23971678

RESUMO

Vector biodistribution and clearance studies are essential in the development of gene transfer medicine. To provide reliable and accurate data, protocols for vector analysis must be optimized and validated. We addressed several parameters affecting the detection of gene therapy vectors in blood. Using an in vitro system based on plasmid DNA incorporating, as a transgene, complementary DNA for human erythropoietin gene, we developed and validated a suite of real-time PCR assays for the transgene splicing sites. The most sensitive assays detected the transgene present at 0.011% of the copy number of the endogenous erythropoietin gene in human genomic DNA at 100% specificity. Plasmid linearization incorporated with PCR resulted in an increase in assay sensitivity up to 4.5-fold without compromising analysis workflow. This allowed detection of five copies of transgene in a background of 0.4 µg of genomic DNA (or 0.0035% detectable transgene copies relevant to copies of the endogenous gene). Finally, desktop assessment of 18 DNA extraction protocols was undertaken and 5 kits were evaluated experimentally for extraction of nonviral vectors from blood. Three kits reliably detected 80 copies of the transgene in a milliliter of blood. Adoption of the described protocols will enable more reliable vector analysis in gene therapy and will assist in accurate interlaboratory comparison. The methodology will also facilitate detection of gene doping in sport, a potential new form of misuse of gene transfer technology.


Assuntos
Eritropoetina/sangue , Terapia Genética/métodos , Vetores Genéticos/sangue , Plasmídeos/sangue , Transgenes , Eritropoetina/genética , Eritropoetina/metabolismo , Vetores Genéticos/genética , Humanos , Plasmídeos/genética , Reação em Cadeia da Polimerase/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA