Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Philos Trans A Math Phys Eng Sci ; 374(2061)2016 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-26755760

RESUMO

The effectiveness of Mg as a promoter of Co-Ru/γ-Al2O3 Fischer-Tropsch catalysts depends on how and when the Mg is added. When the Mg is impregnated into the support before the Co and Ru addition, some Mg is incorporated into the support in the form of MgxAl2O3+x if the material is calcined at 550°C or 800°C after the impregnation, while the remainder is present as amorphous MgO/MgCO3 phases. After subsequent Co-Ru impregnation MgxCo3-xO4 is formed which decomposes on reduction, leading to Co(0) particles intimately mixed with Mg, as shown by high-resolution transmission electron microscopy. The process of impregnating Co into an Mg-modified support results in dissolution of the amorphous Mg, and it is this Mg which is then incorporated into MgxCo3-xO4. Acid washing or higher temperature calcination after Mg impregnation can remove most of this amorphous Mg, resulting in lower values of x in MgxCo3-xO4. Catalytic testing of these materials reveals that Mg incorporation into the Co oxide phase is severely detrimental to the site-time yield, while Mg incorporation into the support may provide some enhancement of activity at high temperature.

2.
Chem Sci ; 6(2): 935-944, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29560180

RESUMO

Development of heterogeneous catalysts for complex reactions such as Fischer-Tropsch synthesis of fuels is hampered by difficult reaction conditions, slow characterisation techniques such as chemisorption and temperature-programmed reduction and the need for long term stability. High-throughput (HT) methods may help, but their use has until now focused on bespoke micro-reactors for direct measurements of activity and selectivity. These are specific to individual reactions and do not provide more fundamental information on the materials. Here we report using simpler HT characterisation techniques (XRD and TGA) along with ageing under Fischer-Tropsch reaction conditions to provide information analogous to metal surface area, degree of reduction and thousands of hours of stability testing time for hundreds of samples per month. The use of this method allowed the identification of a series of highly stable, high surface area catalysts promoted by Mg and Ru. In an advance over traditional multichannel HT reactors, the chemical and structural information we obtain on the materials allows us to identify the structural effects of the promoters and their effects on the modes of deactivation observed.

3.
Clujul Med ; 87(1): 27-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-26527992

RESUMO

INTRODUCTION: With a growing shortage of organs for transplantation, finding ways of increasing the donor organ pool remains of utmost importance. Perfusion machines (PM) have been proven to enhance the potential for kidney transplants to function sooner, last longer, giving patients the opportunity for a better life quality. OBJECTIVE: The aim of this study is to evaluate the relation between the resistance index provided by the PM, the postoperative resistance index measured by Doppler ultrasound and the initial graft outcome. MATERIAL AND METHOD: Between January 2012-December 2012, clinical data obtained from 82 consecutive renal transplants from brain death donors (BDD) which underwent PM maintenance were analyzed in a transversal study. Prior transplantation we recorded the solution temperature, filtration rate and the resistance index provided by PM. After the surgical intervention, each patient had standard follow-up. Doppler ultrasound resistivity index (RI) was recorded on the first postoperative day. RESULTS: Out of 115 renal transplants, 98 (85.21%) were performed with grafts from BDD. The PM was used for 82 renal grafts. The Doppler resistance index in relation to the resistance index shows a highly statistical correlation by linear regression (R=0.813, p<0.0001). Primary graft function was recorded in 74 patients (90.24%) and it was highly statistically significant correlated with the resistance index measured by PM. Out of 8 patients with primary non-function, 6 patients recovered with normal graft function at one year. CONCLUSION: The resistivity index recorded by the life-port machine is correlated with the vascular resistivity index measured by Doppler ultrasound and thus it may predicts the primary graft outcome.

4.
Science ; 331(6014): 195-9, 2011 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-21233383

RESUMO

Selective oxidation of primary carbon-hydrogen bonds with oxygen is of crucial importance for the sustainable exploitation of available feedstocks. To date, heterogeneous catalysts have either shown low activity and/or selectivity or have required activated oxygen donors. We report here that supported gold-palladium (Au-Pd) nanoparticles on carbon or TiO(2) are active for the oxidation of the primary carbon-hydrogen bonds in toluene and related molecules, giving high selectivities to benzyl benzoate under mild solvent-free conditions. Differences between the catalytic activity of the Au-Pd nanoparticles on carbon and TiO(2) supports are rationalized in terms of the particle/support wetting behavior and the availability of exposed corner/edge sites.

5.
Science ; 311(5759): 362-5, 2006 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-16424335

RESUMO

The oxidation of alcohols to aldehydes with O2 in place of stoichiometric oxygen donors is a crucial process for the synthesis of fine chemicals. However, the catalysts that have been identified so far are relatively inactive with primary alkyl alcohols. We showed that Au/Pd-TiO2 catalysts give very high turnover frequencies (up to 270,000 turnovers per hour) for the oxidation of alcohols, including primary alkyl alcohols. The addition of Au to Pd nanocrystals improved the overall selectivity and, using scanning transmission electron microscopy combined with x-ray photoelectron spectroscopy, we showed that the Au-Pd nanocrystals were made up of a Au-rich core with a Pd-rich shell, indicating that the Au electronically influences the catalytic properties of Pd.

6.
Nature ; 437(7062): 1132-5, 2005 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-16237439

RESUMO

Oxidation is an important method for the synthesis of chemical intermediates in the manufacture of high-tonnage commodities, high-value fine chemicals, agrochemicals and pharmaceuticals: but oxidations are often inefficient. The introduction of catalytic systems using oxygen from air is preferred for 'green' processing. Gold catalysis is now showing potential in selective redox processes, particularly for alcohol oxidation and the direct synthesis of hydrogen peroxide. However, a major challenge that persists is the synthesis of an epoxide by the direct electrophilic addition of oxygen to an alkene. Although ethene is epoxidized efficiently using molecular oxygen with silver catalysts in a large-scale industrial process, this is unique because higher alkenes can only be effectively epoxidized using hydrogen peroxide, hydroperoxides or stoichiometric oxygen donors. Here we show that nanocrystalline gold catalysts can provide tunable active catalysts for the oxidation of alkenes using air, with exceptionally high selectivity to partial oxidation products ( approximately 98%) and significant conversions. Our finding significantly extends the discovery by Haruta that nanocrystalline gold can epoxidize alkenes when hydrogen is used to activate the molecular oxygen; in our case, no sacrificial reductant is needed. We anticipate that our finding will initiate attempts to understand more fully the mechanism of oxygen activation at gold surfaces, which might lead to commercial exploitation of the high redox activity of gold nanocrystals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...