Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem C Nanomater Interfaces ; 128(26): 11014-11023, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38983597

RESUMO

Crucial to the performance of devices based on organic molecules is an understanding of how the substrate-molecule interface influences both structural and electronic properties of the molecular layers. Within this context we studied the self-assembly of an alkoxy-triphenylene derived electron donor (HAT) in the monolayer regime on graphene/Ni(111). The molecules assembled into a close-packed hexagonal network commensurate with the graphene layer. Despite the commensurate structure, the HAT molecules only had a weak, physisorptive interaction with the substrate as pointed out by the photoelectron spectroscopy data. We discuss these findings in view of our recent reports for HAT adsorbed on Ag(111) and graphene/Ir(111). For all three substrates HAT adopts a similar close-packed hexagonal structure commensurate with the substrate while being physisorbed. The ionization potential is equal for all three substrates, supporting weak molecule-substrate interactions. These findings are remarkable, as commensurate overlayers usually only form at strongly interacting interfaces. We discuss potential reasons for this particular behavior of HAT which clearly sets itself apart from most studied molecule-substrate systems. In particular, these are the relatively weak but flexible intermolecular interactions, the molecular symmetry matching that of the substrate, and the comparatively weak but directional molecule-substrate interactions.

2.
Nanoscale Adv ; 4(17): 3531-3536, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36134350

RESUMO

We report the structural and electronic properties of narrow chevron-like graphene nanoribbons (GNRs), which depending on their length are either mirror or inversion symmetric. Additionally, GNRs of different length can form molecular heterojunctions based on an unusual binding motif.

3.
J Phys Chem C Nanomater Interfaces ; 126(23): 9855-9861, 2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35747511

RESUMO

In this study, we report on the self-assembly of the organic electron donor 2,3,6,7,10,11-hexamethoxytriphenylene (HAT) on graphene grown epitaxially on Ir(111). Using scanning tunneling microscopy and low-energy electron diffraction, we find that a monolayer of HAT assembles in a commensurate close-packed hexagonal network on graphene/Ir(111). X-ray and ultraviolet photoelectron spectroscopy measurements indicate that no charge transfer between the HAT molecules and the graphene/Ir(111) substrate takes place, while the work function decreases slightly. This demonstrates that the HAT/graphene interface is weakly interacting. The fact that the molecules nonetheless form a commensurate network deviates from what is established for adsorption of organic molecules on metallic substrates where commensurate overlayers are mainly observed for strongly interacting systems.

4.
J Phys Chem C Nanomater Interfaces ; 125(44): 24557-24567, 2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34795811

RESUMO

In recent studies, porphyrin derivatives have been frequently used as building blocks for the fabrication of metal-organic coordination networks (MOCNs) on metal surfaces under ultrahigh vacuum conditions (UHV). The porphyrin core can host a variety of 3d transition metals, which are usually incorporated in solution. However, the replacement of a pre-existing metal atom in the porphyrin core by a different metallic species has been rarely reported under UHV. Herein, we studied the influence of cyanophenyl and pyridyl functional endgroups in the self-assembly of structurally different porphyrin-based MOCNs by the deposition of Fe atoms on tetracyanophenyl (Co-TCNPP) and tetrapyridyl-functionalized (Zn-TPPyP) porphyrins on Au(111) by means of scanning tunneling microscopy (STM). A comparative analysis of the influence of the cyano and pyridyl endgroups on the formation of different in-plane coordination motifs is performed. Each porphyrin derivative formed two structurally different Fe-coordinated MOCNs stabilized by three- and fourfold in-plane coordination nodes, respectively. Interestingly, the codeposited Fe atoms did not only bind to the functional endgroups but also reacted with the porphyrin core of the Zn-substituted porphyrin (Zn-TPyP), i.e., an atom exchange reaction took place in the porphyrin core where the codeposited Fe atoms replaced the Zn atoms. This was evidenced by the appearance of molecules with an enhanced (centered) STM contrast compared with the appearance of Zn-TPyP, which suggested the formation of a new molecular species, i.e., Fe-TPPyP. Furthermore, the porphyrin core of the Co-substituted porphyrin (Co-TCNPP) displayed an off-centered STM contrast after the deposition of Fe atoms, which was attributed to the binding of the Fe atoms on the top site of the Co-substituted porphyrin core. In summary, the deposition of metal atoms onto organic layers can steer the formation of structurally different MOCNs and may replace pre-existing metal atoms contained in the porphyrin core.

5.
Chemistry ; 27(48): 12430-12436, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34153154

RESUMO

The self-assembly of a nickel-porphyrin derivative (Ni-DPPyP) containing two pyridyl coordinating sites and two pentyl chains at trans meso positions was studied with scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS) and low energy electron diffraction (LEED) on Au(111). Deposition of Ni-DPPyP onto Au(111) gave rise to a close-packed network for coverages smaller or equal to one monolayer as revealed by STM and LEED. The molecular arrangement of this two-dimensional network is stabilized via hydrogen bonds formed between the pyridyl's nitrogen and hydrogen atoms from the pyrrole groups of neighboring molecules. Subsequent deposition of cobalt atoms onto the close-packed network and post-deposition annealing at 423 K led to the formation of a Co-coordinated hexagonal porous network. As confirmed by XPS measurements, the porous network is stabilized by metal-ligand interactions between one cobalt atom and three pyridyl ligands, each pyridyl ligand coming from a different Ni-DPPyP molecule.

6.
J Am Chem Soc ; 142(8): 4070-4078, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-31971383

RESUMO

Achieving long-range order with surface-supported supramolecular assemblies is one of the pressing challenges in the prospering field of non-covalent surface functionalization. Having access to defect-free on-surface molecular assemblies will pave the way for various nanotechnology applications. Here we report the synthesis of two libraries of naphthalenediimides (NDIs) symmetrically functionalized with long aliphatic chains (C28 and C33) and their self-assembly at the 1-phenyloctane/highly oriented pyrolytic graphite (1-PO/HOPG) interface. The two NDI libraries differ by the presence/absence of an internal double bond in each aliphatic chain (unsaturated and saturated compounds, respectively). All molecules assemble into lamellar arrangements, with the NDI cores lying flat and forming 1D rows on the surface, while the carbon chains separate the 1D rows from each other. Importantly, the presence of the unsaturation plays a dominant role in the arrangement of the aliphatic chains, as it exclusively favors interdigitation. The fully saturated tails, instead, self-assemble into a combination of either interdigitated or non-interdigitated diagonal arrangements. This difference in packing is spectacularly amplified at the whole surface level and results in almost defect-free self-assembled monolayers for the unsaturated compounds. In contrast, the monolayers of the saturated counterparts are globally disordered, even though they locally preserve the lamellar arrangements. The experimental observations are supported by computational studies and are rationalized in terms of stronger van der Waals interactions in the case of the unsaturated compounds. Our investigation reveals the paramount role played by internal double bonds on the self-assembly of discrete large molecules at the liquid/solid interface.

7.
Nat Mater ; 19(3): 330-337, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31959952

RESUMO

Self-assembled monolayers (SAMs) are widely used to engineer the surface properties of metals. The relatively simple and versatile chemistry of metal-thiolate bonds makes thiolate SAMs the preferred option in a range of applications, yet fragility and a tendency to oxidize in air limit their long-term use. Here, we report the formation of thiol-free self-assembled mono- and bilayers of glycol ethers, which bind to the surface of coinage metals through the spontaneous chemisorption of glycol ether-functionalized fullerenes. As-prepared assemblies are bilayers presenting fullerene cages at both the substrate and ambient interface. Subsequent exposure to functionalized glycol ethers displaces the topmost layer of glycol ether-functionalized fullerenes, and the resulting assemblies expose functional groups to the ambient interface. These layers exhibit the key properties of thiolate SAMs, yet they are stable to ambient conditions for several weeks, as shown by the performance of tunnelling junctions formed from SAMs of alkyl-functionalized glycol ethers. Glycol ether-functionalized spiropyrans incorporated into mixed monolayers lead to reversible, light-driven conductance switching. Self-assemblies of glycol ethers are drop-in replacements for thiolate SAMs that retain all of their useful properties while avoiding the drawbacks of metal-thiolate bonds.

8.
J Phys Chem C Nanomater Interfaces ; 123(32): 19681-19687, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31447961

RESUMO

The self-assembly process of a cobalt-porphyrin derivative (Co-TCNPP) containing cyanophenyl substituents at all four meso positions on Au(111) was studied by means of scanning tunneling microscopy (STM) and low energy electron diffraction (LEED) under ultrahigh vacuum conditions. Deposition of Co-TCNPP onto Au(111) gave rise to the formation of a close-packed H-bonded network, which was independent of coverage as revealed by STM and LEED. However, a coverage-dependent structural transformation took place upon the deposition of Co atoms. At monolayer coverage, a reticulated long-range ordered network exhibiting a distinct fourfold Co coordination was observed. By reduction of the molecular coverage, a second metal-organic coordination network (MOCN) was formed in coexistence with the fourfold Co-coordinated network, that is, a chevron structure stabilized by a simultaneous expression of H-bonding and threefold Co coordination. We attribute the coverage-dependent structural transformation to the in-plane compression pressure exerted by the molecules deposited on the surface. Our study shows that a subtle interplay between the chemical nature of the building blocks (molecules and metallic atoms) and molecular coverage can steer the formation of structurally different porphyrin-based MOCNs.

9.
J Phys Chem C Nanomater Interfaces ; 123(20): 12730-12735, 2019 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-31156737

RESUMO

We report the formation of one- and two-dimensional metal-organic coordination structures from para-hexaphenyl-dicarbonitrile (NC-Ph6-CN) molecules and Cu atoms on graphene epitaxially grown on Ir(111). By varying the stoichiometry between the NC-Ph6-CN molecules and Cu atoms, the dimensionality of the metal-organic coordination structures could be tuned: for a 3:2 ratio, a two-dimensional hexagonal porous network based on threefold Cu coordination was observed, while for a 1:1 ratio, one-dimensional chains based on twofold Cu coordination were formed. The formation of metal-ligand bonds was supported by imaging the Cu atoms within the metal-organic coordination structures with scanning tunneling microscopy. Scanning tunneling spectroscopy measurements demonstrated that the electronic properties of NC-Ph6-CN molecules and Cu atoms were different between the two-dimensional porous network and one-dimensional molecular chains.

10.
J Phys Chem C Nanomater Interfaces ; 123(12): 7151-7157, 2019 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-30949275

RESUMO

We report on the self-assembly of a conformational flexible organic compound on Au(111) using scanning tunneling microscopy and low-energy electron diffraction measurements. We observed different conformers of the compound upon adsorption on the reconstructed Au(111) surface. Increasing the molecular coverage enhanced the lateral pressure, that is, parallel to the surface, favoring a coverage-controlled transition from a supramolecular network displaying only one molecular organization, into a polymorphic array with two coexisting arrangements. Our results give insights into the role of substrate-induced conformational changes on the formation of polymorphic supramolecular networks.

11.
Chemistry ; 25(19): 5065-5070, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30657213

RESUMO

A comparative study on the self-assembly of sexiphenyl-dicarbonitrile on highly oriented pyrolytic graphite and single-layer graphene on Cu(111) is presented. Despite an overall low molecule-substrate interaction, the close-packed structures exhibit a peculiar shift repeating every four to five molecules. This shift has hitherto not been reported for similar systems and is hence a unique feature induced by the graphitic substrates.

12.
J Phys Condens Matter ; 28(15): 153003, 2016 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-26982214

RESUMO

Quantum effects that arise from confinement of electronic states have been extensively studied for the surface states of noble metals. Utilizing small artificial structures for confinement allows tailoring of the surface properties and offers unique opportunities for applications. So far, examples of surface state confinement include thin films, artificial nanoscale structures, vacancy and adatom islands, self-assembled 1D chains, vicinal surfaces, quantum dots and quantum corrals. In this review we summarize recent achievements in changing the electronic structure of surfaces by adsorption of nanoporous networks whose design principles are based on the concepts of supramolecular chemistry. Already in 1993, it was shown that quantum corrals made from Fe atoms on a Cu(1 1 1) surface using single atom manipulation with a scanning tunnelling microscope confine the Shockley surface state. However, since the atom manipulation technique for the construction of corral structures is a relatively time consuming process, the fabrication of periodic two-dimensional (2D) corral structures is practically impossible. On the other side, by using molecular self-assembly extended 2D porous structures can be achieved in a parallel process, i.e. all pores are formed at the same time. The molecular building blocks are usually held together by non-covalent interactions like hydrogen bonding, metal coordination or dipolar coupling. Due to the reversibility of the bond formation defect-free and long-range ordered networks can be achieved. However, recently also examples of porous networks formed by covalent coupling on the surface have been reported. By the choice of the molecular building blocks, the dimensions of the network (pore size and pore to pore distance) can be controlled. In this way, the confinement properties of the individual pores can be tuned. In addition, the effect of the confined state on the hosting properties of the pores will be discussed in this review article.

13.
Mar Pollut Bull ; 107(2): 453-8, 2016 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-26851869

RESUMO

Sediment samples from the coastal lagoons and estuaries of New York and New Jersey were used to investigate the influence of contaminants on diatom assemblages. Multivariate analyses demonstrated correspondence between composition of diatom assemblages and concentrations of several metals and total PAH. The effects of the individual contaminants were difficult to disentangle because of the considerable correlations between their concentrations. The most conspicuous trend was the increase in the relative abundance of small centric planktonic diatoms in response to contamination and the corresponding decrease in the benthic flora. The high relative abundance of planktonic species on contaminated sediments apparently resulted not so much from their tolerance to pollution, but from the paucity of benthic species. A comparison of the assemblages on the surface and at the depth of approximately 8-10cm revealed a statistically significant temporal change in community composition towards planktonic diatoms.


Assuntos
Diatomáceas/efeitos dos fármacos , Monitoramento Ambiental , Estuários , Sedimentos Geológicos/química , Poluentes Químicos da Água/toxicidade , Sedimentos Geológicos/análise , New Jersey , New York
14.
Water Air Soil Pollut ; 225: 1857, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24578586

RESUMO

The goal of this study was to document if lakes in National Parks in Washington have exceeded critical levels of nitrogen (N) deposition, as observed in other Western States. We measured atmospheric N deposition, lake water quality, and sediment diatoms at our study lakes. Water chemistry showed that our study lakes were ultra-oligotrophic with ammonia and nitrate concentrations often at or below detection limits with low specific conductance (<100 µS/cm), and acid neutralizing capacities (<400 µeq/L). Rates of summer bulk inorganic N deposition at all our sites ranged from 0.6 to 2.4 kg N ha-1 year-1 and were variable both within and across the parks. Diatom assemblages in a single sediment core from Hoh Lake (Olympic National Park) displayed a shift to increased relative abundances of Asterionella formosa and Fragilaria tenera beginning in the 1969-1975 timeframe, whereas these species were not found at the remaining (nine) sites. These diatom species are known to be indicative of N enrichment and were used to determine an empirical critical load of N deposition, or threshold level, where changes in diatom communities were observed at Hoh Lake. However, N deposition at the remaining nine lakes does not seem to exceed a critical load at this time. At Milk Lake, also in Olympic National Park, there was some evidence that climate change might be altering diatom communities, but more research is needed to confirm this. We used modeled precipitation for Hoh Lake and annual inorganic N concentrations from a nearby National Atmospheric Deposition Program station, to calculate elevation-corrected N deposition for 1980-2009 at Hoh Lake. An exponential fit to this data was hindcasted to the 1969-1975 time period, and we estimate a critical load of 1.0 to 1.2 kg N ha-1 year-1 for wet deposition for this lake.

15.
Chemistry ; 18(46): 14610-3, 2012 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-23065935

RESUMO

Repulsive interactions: a staging of supramolecular aggregation from (0D) clusters to (1D) chains and (2D) assemblies as a function of molecular coverage of dipolar porphyrins adsorbed on the Ag(111) surface is described. It displays a complex interplay of both attractive and repulsive molecule-molecule interactions, the emergence of chirality, and the registry of the substrate.


Assuntos
Porfirinas/química , Prata/química , Estrutura Molecular , Espectrofotometria Ultravioleta , Estereoisomerismo
16.
Psychopharmacology (Berl) ; 214(1): 197-208, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20101392

RESUMO

RATIONALE: In rats, prenatal restraint stress (PRS) induces persistent behavioral and neurobiological alterations leading to a greater consumption of psychostimulants during adulthood. However, little is known about alcohol vulnerability in this animal model. OBJECTIVES: We examined in adolescent and adult male Sprague Dawley rats the long-lasting impact of PRS exposure on alcohol consumption. METHODS: PRS rats were subjected to a prenatal stress (three daily 45-min sessions of restraint stress to the mothers during the last 10 days of pregnancy). Alcohol preference was assessed in a two-bottle choice paradigm (alcohol 2.5%, 5%, or 10% versus water), in both naïve adolescent rats and adult rats previously exposed to a chronic alcohol treatment. Behavioral indices associated with incentive motivation for alcohol were investigated. Finally, plasma levels of transaminases (marker of hepatic damages) and ΔFosB levels in the nucleus accumbens (a potential molecular switch for addiction) were evaluated following the chronic alcohol exposure. RESULTS: Alcohol preference was not affected by PRS. Contrary to our expectations, stressed and unstressed rats did not display signs of compulsive alcohol consumption. The consequences of the alcohol exposure on locomotor reactivity and on transaminase levels were more prominent in PRS group. Similarly, PRS potentiated alcohol-induced ΔFosB levels in the nucleus accumbens. CONCLUSION: Our data suggest that negative events occurring in utero do not modulate alcohol preference in male rats but potentiate chronic alcohol-induced molecular neuroadaptation in the brain reward circuitry. Further studies are needed to determine whether the exacerbated ΔFosB upregulation in PRS rats could be extended to other reinforcing stimuli.


Assuntos
Consumo de Bebidas Alcoólicas/epidemiologia , Etanol/administração & dosagem , Efeitos Tardios da Exposição Pré-Natal , Estresse Psicológico/complicações , Animais , Modelos Animais de Doenças , Feminino , Masculino , Atividade Motora/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Gravidez , Proteínas Proto-Oncogênicas c-fos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Sprague-Dawley , Restrição Física , Recompensa , Transaminases/sangue
17.
Phys Chem Chem Phys ; 12(31): 8815-21, 2010 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-20532367

RESUMO

A novel approach of identifying metal atoms within a metal-organic surface coordination network using scanning tunnelling microscopy (STM) is presented. The Cu adatoms coordinated in the porous surface network of 1,3,8,10-tetraazaperopyrene (TAPP) molecules on a Cu(111) surface give rise to a characteristic electronic resonance in STM experiments. Using density functional theory calculations, we provide strong evidence that this resonance is a fingerprint of the interaction between the molecules and the Cu adatoms. We also show that the bonding of the Cu adatoms to the organic exodentate ligands is characterised by both the mixing of the nitrogen lone-pair orbitals of TAPP with states on the Cu adatoms and the partial filling of the lowest unoccupied molecular orbital (LUMO) of the TAPP molecule. Furthermore, the key interactions determining the surface unit cell of the network are discussed.

18.
Chemistry ; 16(7): 2079-91, 2010 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-20077537

RESUMO

The structural chemistry and reactivity of 1,3,8,10-tetraazaperopyrene (TAPP) on Cu(111) under ultra-high-vacuum (UHV) conditions has been studied by a combination of experimental techniques (scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy, XPS) and DFT calculations. Depending on the deposition conditions, TAPP forms three main assemblies, which result from initial submonolayer coverages based on different intermolecular interactions: a close-packed assembly similar to a projection of the bulk structure of TAPP, in which the molecules interact mainly through van der Waals (vDW) forces and weak hydrogen bonds; a porous copper surface coordination network; and covalently linked molecular chains. The Cu substrate is of crucial importance in determining the structures of the aggregates and available reaction channels on the surface, both in the formation of the porous network for which it provides the Cu atoms for surface metal coordination and in the covalent coupling of the TAPP molecules at elevated temperature. Apart from their role in the kinetics of surface transformations, the available metal adatoms may also profoundly influence the thermodynamics of transformations by coordination to the reaction product, as shown in this work for the case of the Cu-decorated covalent poly(TAPP-Cu) chains.

19.
Chemistry ; 15(42): 11139-50, 2009 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-19760724

RESUMO

The self-assembly properties of two Zn(II) porphyrin isomers on Cu(111) are studied at different coverage by means of scanning tunneling microscopy (STM). Both isomers are substituted in their meso-positions by two voluminous 3,5-di(tert-butyl)phenyl and two rod-like 4'-cyanobiphenyl groups, respectively. In the trans-isomer, the two 4'-cyanobiphenyl groups are opposite to each other, whereas they are located at right angle in the cis-isomer. For coverage up to one monolayer, the cis-substituted porphyrins self-assemble to form oligomeric macrocycles held together by antiparallel CNCN dipolar interactions and CNH-C(sp(2)) hydrogen bonding. Cyclic trimers and tetramers occur most frequently but everything from cyclic dimers to hexamers can be observed. Upon annealing of the samples at temperatures >150 degrees C, dimeric macrocyclic structures are observed, in which the two porphyrins are bridged by Cu atoms, originating from the surface, under formation of two CNCuNC coordination bonds. The trans-isomer builds up linear chains on Cu(111) at low coverage, whereas for higher coverage the molecules assemble in a periodic, densely packed structure. Both cis- and trans-bis(4'-cyanobiphenyl)-substituted Zn(II) porphyrins behave very differently on Cu(111) compared to similar porphyrins in literature on less reactive surfaces such as Au(111) and Ag(111). On the latter surfaces, there is no signal visible between molecular orientation and the crystal directions of the substrate, whereas on Cu(111), very strong adsorbate-substrate interactions have a dominating influence on all observed structures. This strong porphyrin-substrate interaction enables a much broader variety of structures, including also less favorable intermolecular bonding motifs and geometries.

20.
Chem Commun (Camb) ; (24): 3525-7, 2009 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-19521595

RESUMO

A temperature-induced phase transition of a 2D H-bonded assembly, enabling quadruple H-bonding interactions, from a hexagonal porous network into a close-packed rhombic arrangement has been observed on Ag(111) by STM imaging.


Assuntos
Conformação Molecular , Ligação de Hidrogênio , Microscopia de Tunelamento , Modelos Moleculares , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...