Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 2(2): 425-33, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20356188

RESUMO

The structure and adsorption behaviors of two types of hydrophobically modified polyvinylamines (PVAm) containing substituents of hexyl and octyl chains were compared to a native polyvinylamine sample. The conformation of dissolved polyvinylamines was studied in aqueous salt solutions using dynamic light scattering. Modified PVAm showed hydrodynamic diameters similar to native PVAm, which indicated that all PVAm polymers were present as single molecules in solution. The adsorption of the polyvinylamines, both native and hydrophobically modified, from aqueous solution onto negatively charged silica surfaces was studied in situ by reflectometry and quartz crystal microgravimetry with dissipation. Polyelectrolyte multilayers (PEM) with up to nine individual layers were formed together with poly(acrylic acid). Obtained PEM structures were rigid and showed high adsorbed amounts combined with low dissipation, with similar results for both the modified and unmodified PVAm. This suggests that electrostatics dominated the PEM formation. At lower salt concentrations, the hydrophobically modified PVAm produced multilayers with low water contents, indicating that secondary interactions induced by the hydrophobic constituents can also have a significant influence on the properties of the formed layers. The surface structure of PEMs with nine individual layers was imaged in dry state using atomic force microscopy in a dynamic mode. Modified PVAm was found to induce a different structure of the PEM at 100 mM, with larger aggregates compared to those of native PVAm. From these results, it is proposed that modified PVAm can induce aggregation within the PEM, whereas PVAm remains as single molecules in solution.

2.
Biomacromolecules ; 10(6): 1478-83, 2009 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-19391584

RESUMO

Hydrophobically modified and unmodified polyvinylamines (PVAm), including a total of five polymers, were tested against both gram-negative ( Escherichia coli ) and gram-positive ( Bacillus subtilis ) bacteria for antimicrobial activity. The assessment of PVAm in solution against bacteria is described, and the influence of the charge density and of the hydrophobic modification of the polyelectrolyte is discussed. The antimicrobial activity was found to depend upon the concentration of PVAm and also on the type of bacteria used. The results also indicated that no direct relationship exists between antimicrobial activity and charge density of the different PVAms. It was, however, observed that an alkyl chain length of six or eight alkane units had a substantial effect on the bacteria investigated. The best combined antibacterial activity for the two bacteria tested was achieved for PVAm with a C(6) alkane substituent (PVAm C(6)). To evaluate the antimicrobial activity on a solid substrate, PVAm C(6) was further studied after being deposited onto a glass slide and the results show a large reduction in bacterial infection.


Assuntos
Antibacterianos/farmacologia , Polivinil/farmacologia , Antibacterianos/química , Bacillus subtilis/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Polivinil/química
3.
Biomacromolecules ; 10(1): 134-41, 2009 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-19053297

RESUMO

Thin cellulose films were prepared by dissolving carboxymethylated cellulose fibers in N-methyl morpholine oxide and forming thin films on silicon wafers by spin-coating. The adsorption of cationic polyacrylamides and polydiallyldimethylammonium chloride onto these films was studied by stagnation point adsorption reflectometry (SPAR) and by quartz crystal microgravimetry with dissipation (QCM-D). The polyelectrolyte adsorption was studied by SPAR as a function of salt concentration, and it was found that the adsorption maximum was located at 1 mM NaCl for polyelectrolytes of low charge density and at 10 mM NaCl for polyelectrolytes of high charge density. Electrostatic screening led to complete elimination of the polyelectrolyte adsorption at salt concentrations of 300 mM NaCl. According to the QCM-D analysis, the cellulose films showed a pronounced swelling in water that took several hours to complete. Subsequent adsorption of polyelectrolytes onto the cellulose films led to a release of water from the cellulose, an effect that was substantial for polyelectrolytes of high charge density at low salt concentrations. The total mass change including water could therefore show either an increase or a decrease during adsorption onto the cellulose films, depending on the experimental conditions.


Assuntos
Resinas Acrílicas/química , Celulose/química , Eletrólitos/química , Membranas Artificiais , Polietilenos/química , Quartzo/química , Compostos de Amônio Quaternário/química , Adsorção , Celulose/síntese química , Cristalização , Substâncias Macromoleculares/síntese química , Substâncias Macromoleculares/química , Microeletrodos , Dióxido de Silício/química , Cloreto de Sódio/química , Eletricidade Estática , Propriedades de Superfície , Fatores de Tempo
4.
J Colloid Interface Sci ; 325(1): 84-92, 2008 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-18589434

RESUMO

The conformation of cationic polyelectrolytes preadsorbed on macroscopic silica surfaces was studied before and after addition of colloidal silica (CS) and compared to the fixation capacity of CS. The study included two polyelectrolytes of equal charge density, cationic polyacrylamide and cationic dextran. Adsorbed amounts were determined with stagnation point adsorption reflectometry (SPAR) and quartz crystal microgravimetry (QCM). Unsaturated layers of polyelectrolyte were formed in SPAR by stopping the adsorption at a fractional coverage relative to saturation adsorption. These layers were probed by secondary saturation adsorption of colloidal silica (CS). At low salt concentrations a high fractional coverage of polyelectrolyte was required to attain adsorption of CS, while significant adsorption of CS was found also for low fractional coverages of polyelectrolyte at salt concentrations above 10 mM NaCl. Saturation adsorption of cationic polyacrylamide (CPAM) and cationic dextran (Cdextran) onto the silica surface was found to be similar, while the secondary adsorption of CS was significantly higher onto preadsorbed CPAM compared with Cdextran. The QCM and SPAR data together indicated that the adsorbed layer of Cdextran was thinner than CPAM, and that a loose, expanded layer was formed after adsorption of CS on CPAM but not on Cdextran.

5.
Langmuir ; 24(14): 7329-37, 2008 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-18553950

RESUMO

The effects of charge density, pH, and salt concentration on polyelectrolyte adsorption onto the oxidized surface of silicon wafers were studied using stagnation point adsorption reflectometry and quartz crystal microgravimetry. Five different polyelectrolytescationic polyacrylamides of four charge densities and one cationic dextranwere examined. The adsorption kinetics was characterized using each technique, and the adsorption kinetics observed was in line with the impinging jet theory and the theory for one-dimensional diffusion, respectively. The polyelectrolyte adsorption increased with pH as an effect of the increased silica surface charge. A maximum in the saturation adsorption for both types of polyelectrolytes was found at 10 mM NaCl concentration. A significant adsorption also occurred at 1 M NaCl, which indicated a significant nonionic contribution to the adsorption mechanism. The fraction of solvent in the adsorbed layer was determined to be 70-80% by combining the two analysis techniques. This indicated a loose structure of the adsorbed layer and an extended conformation at the surface, favoring loops and tails. However, considering the solution structure with a hydrodynamic diameter larger than 100 nm for the CPAM and a thickness of the adsorbed layer on the order of 10 nm, the results showed that the adsorption is accompanied by a drastic change in polymer conformation. Furthermore, this conformation change takes place on a time scale far shorter than seconds.

6.
J Colloid Interface Sci ; 301(1): 32-9, 2006 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-16820163

RESUMO

The electrostatic interaction between quarternised hyperbranched polymers (polyesteramides) and a silicon oxide (SiO2) surface has been studied via adsorption studies with quartz crystal microbalance instrument with dissipation (QCM-D). Frequency shift (Deltaf) results show that the increase in both pH and salt concentration positively affect the adsorbed amount of these polymers, calculated by Sauerbrey equation, on the QCM crystal. The adsorbed amount of HA1 (with lower molecular weight and higher charge density) was lower than that of HA2 (with higher molecular weight and lower charge density) in all experiments. It was also observed that there are no significant changes in the dissipation after adsorption of these polymers. This indicated that both hyperbranched polymers formed rigid adsorbed layers on the negative SiO2 surface. Additionally, the results were compared with adsorption of poly-DADMAC and the results showed that the hyperbranched polymers formed thicker and more rigid layers as compared with the poly-DADMAC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...