Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 15(6)2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35745616

RESUMO

Immune checkpoint targeting immunotherapy has revolutionized the treatment of certain cancers in the recent years. Determination of the status of immune checkpoint expression in particular cancers may assist decision making. Here, we describe the development of a single-stranded aptamer-based molecular probe specifically recognizing human PD-L1. Target engaging aptamers are selected by iterative enrichment from a random ssDNA pool and the binding is characterized biochemically. Specificity and dose dependence is demonstrated in vitro in the cell culture using human kidney tumor cells (786-0), human melanoma cells (WM115 and WM266.4) and human glioblastoma LN18 cancer cells. The utility of the probe in vivo is demonstrated using two mouse tumor models, where we show that the probe exhibits excellent potential in imaging. We postulate that further development of the probe may allow universal imaging of different types of tumors depending on their PD-L1 status, which may find utility in cancer diagnosis.

2.
FEBS Lett ; 594(15): 2406-2420, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32473599

RESUMO

The interaction between the Shiga toxin B-subunit (STxB) and its globotriaosylceramide receptor (Gb3) has a high potential for being exploited for targeted cancer therapy. The primary goal of this study was to evaluate the capacity of STxB to carry small molecules and proteins as cargo into cells. For this purpose, an assay was designed to provide real-time information about the StxB-Gb3 interaction as well as the dynamics and mechanism of the internalization process. The assay revealed the ability to distinguish the process of binding to the cell surface from internalization and presented the importance of receptor and STxB clustering for internalization. The overall setup demonstrated that the binding mechanism is complex, and the concept of affinity is difficult to apply. Hence, time-resolved methods, providing detailed information about the interaction of STxB with cells, are critical for the optimization of intracellular delivery.


Assuntos
Bioensaio , Portadores de Fármacos , Neoplasias/metabolismo , Toxinas Shiga , Triexosilceramidas/metabolismo , Transporte Biológico Ativo , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacologia , Células HT29 , Humanos , Células K562 , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Toxinas Shiga/farmacocinética , Toxinas Shiga/farmacologia
3.
J Nutr Biochem ; 56: 183-192, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29587241

RESUMO

A diet rich in fiber is associated with a low risk of developing colorectal cancer. Dietary fiber fermentation by intestinal microflora results in the production of butyrate, which has been reported as a chemopreventive agent and a histone deacetylase inhibitor (HDACi). Irinotecan is used as second-line treatment and induces adverse effects with serious life-threatening toxicities in at least 36% of patients. Our study intends to find a synergy that could improve the efficacy and decrease the toxicity of chemotherapy. Results demonstrate that milimolar concentrations of butyrate has an anti-proliferative effect in all three colon cancer cell lines under study, leading to a decrease on cell viability, expression of P21, P53 and ß-catenin, being able to modulate P-glycoprotein activity and to induce apoptosis by modulation of BAX/BCL-2 ratio. Combined therapy has a cytotoxic potential, resulting in a synergistic effect, and allows a reduction in irinotecan concentration needed to reduce IC50. This potential was verified in terms of cell viability and death, cell cycle and expression of P21 and P53. Butyrate and irinotecan act synergistically in the three cancer cell lines, despite the different genetic background and location, and inhibited tumor growth in a xenograft model. Butyrate is able to influence the mechanism of LS1034 cell line chemoresistance. Butyrate in combination with chemotherapeutic agents has an important role for the treatment of colorectal cancer. Such understanding can guide decisions about which patients with colorectal cancer may benefit from therapy with butyrate demonstrating the important role of diet in colorectal cancer treatment.


Assuntos
Antineoplásicos/administração & dosagem , Butiratos/administração & dosagem , Neoplasias do Colo/metabolismo , Irinotecano/administração & dosagem , Animais , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Colo/metabolismo , Neoplasias do Colo/tratamento farmacológico , Fibras na Dieta , Sinergismo Farmacológico , Fermentação , Microbioma Gastrointestinal , Histona Desacetilases/metabolismo , Humanos , Concentração Inibidora 50 , Camundongos , Camundongos Endogâmicos BALB C , Transplante de Neoplasias
4.
Appl Microbiol Biotechnol ; 102(9): 4193-4201, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29550990

RESUMO

Time-resolved analysis assays of receptor-ligand interactions are fundamental in basic research and drug discovery. Adequate methods are well developed for the analysis of recombinant proteins such as antibody-antigen interactions. However, assays for time-resolved ligand-binding processes on living cells are still rare, in particular within microbiology. In this report, the real-time cell-binding assay (RT-CBA) technology LigandTracer®, originally designed for mammalian cell culture, was extended to cover Gram-positive and Gram-negative bacteria. This required the development of new immobilization methods for bacteria, since LigandTracer depends on cells being firmly attached to a Petri dish. The evaluated Escherichia coli CJ236 and BL21 as well as Staphylococcus carnosus TM300 strains were immobilized to plastic Petri dishes using antibody capture, allowing us to depict kinetic binding traces of fluorescently labeled antibodies directed against surface-displayed bacterial proteins for as long as 10-15 h. Interaction parameters, such as the affinity and kinetic constants, could be estimated with high precision (coefficient of variation 9-44%) and the bacteria stayed viable for at least 16 h. The other tested attachment protocols were inferior to the antibody capture approach. Our attachment protocol is generic and could potentially also be applied to other assays and purposes.


Assuntos
Anticorpos/metabolismo , Escherichia coli/metabolismo , Staphylococcus/metabolismo , Animais , Fluorescência , Cinética , Ligantes , Ligação Proteica
5.
Biomed Rep ; 7(5): 400-406, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29181152

RESUMO

Kinetic and thermodynamic studies of ligand-receptor interactions are essential for increasing the understanding of receptor activation mechanisms and drug behavior. The characterization of molecular interactions on living cells in real-time goes beyond most current binding assays, and provides valuable information about the dynamics and underlying mechanism of the molecules in a living system. The effect of temperature on interactions in cell-based assays is, however, rarely discussed. In the present study, the effect of temperature on binding of monoclonal antibodies, cetuximab and pertuzumab to specific receptors on living cancer cells was evaluated, and the affinity and kinetics of the interactions were estimated at selected key temperatures. Changes in the behavior of the interactions, particularly in the on- and off-rates were observed, leading to greatly extended time to reach the equilibrium at 21°C compared with at 37°C. However, the observed changes in kinetic characteristics were less than a factor of 10. It was concluded that it is possible to conduct real-time measurements with living cells at different temperatures, and demonstrated that influences of the ambient temperature on the interaction behavior are likely to be less than one order of magnitude.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...