Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell Environ ; 47(5): 1747-1768, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38317308

RESUMO

The plant cell wall is a plastic structure of variable composition that constitutes the first line of defence against environmental challenges. Lodging and drought are two stressful conditions that severely impact maize yield. In a previous work, we characterised the cell walls of two maize inbreds, EA2024 (susceptible) and B73 (resistant) to stalk lodging. Here, we show that drought induces distinct phenotypical, physiological, cell wall, and transcriptional changes in the two inbreds, with B73 exhibiting lower tolerance to this stress than EA2024. In control conditions, EA2024 stalks had higher levels of cellulose, uronic acids and p-coumarate than B73. However, upon drought EA2024 displayed increased levels of arabinose-enriched polymers, such as pectin-arabinans and arabinogalactan proteins, and a decreased lignin content. By contrast, B73 displayed a deeper rearrangement of cell walls upon drought, including modifications in lignin composition (increased S subunits and S/G ratio; decreased H subunits) and an increase of uronic acids. Drought induced more substantial changes in gene expression in B73 compared to EA2024, particularly in cell wall-related genes, that were modulated in an inbred-specific manner. Transcription factor enrichment assays unveiled inbred-specific regulatory networks coordinating cell wall genes expression. Altogether, these findings reveal that B73 and EA2024 inbreds, with opposite stalk-lodging phenotypes, undertake different cell wall modification strategies in response to drought. We propose that the specific cell wall composition conferring lodging resistance to B73, compromises its cell wall plasticity, and renders this inbred more susceptible to drought.


Assuntos
Lignina , Zea mays , Lignina/metabolismo , Zea mays/fisiologia , Secas , Parede Celular/metabolismo , Ácidos Urônicos/metabolismo
2.
Physiol Plant ; 175(3): e13935, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37198957

RESUMO

Grafting involves a sequence of modifications that may vary according to genotypes, grafting techniques and growing conditions. This process is often monitored using destructive methods, precluding the possibility of monitoring the entire process in the same grafted plant. The aim of this study was to test the effectiveness of two non-invasive methods-thermographic inference of transpiration and determination of chlorophyll quantum yields-for monitoring graft dynamics in tomato (Solanum lycopersicum L.) autografts and to compare the results with other reliable measures: mechanical resistance parameters and xylem water potential. The mechanical resistance of grafted plants steadily increased from 6 days after grafting (DAG), 4.90 ± 0.57 N/mm, to reach values similar to non-grafted plants at 16 DAG, 8.40 ± 1.78 N/mm. Water potential showed an early decrease (from -0.34 ± 0.16 MPa in non-grafted plants to -0.88 ± 0.07 MPa at 2 DAG), recovering at 4 DAG to reach pre-grafting values at 12-16 DAG. Thermographic inference of transpiration dynamics displayed comparable changes. Monitoring maximum and effective quantum yield in functional grafts showed a comparable pattern: an initial decline, followed by recovery from 6 DAG onwards. Correlation analyses revealed a significant correlation between variation in temperature (thermographic monitoring of transpiration), water potential (r = 0.87; p = 0.02) and maximum tensile force (r = 0.75; p = 0.05). Additionally, we found a significant correlation between maximum quantum yield and some mechanical parameters. In conclusion, thermography monitoring, and to a lesser extent maximum quantum yield measurements, accurately depict changes in key parameters in grafted plants and serve as potential timing indicators of graft regeneration, rendering them valuable tools for monitoring graft functionality.


Assuntos
Solanum lycopersicum , Termografia , Genótipo , Clorofila , Água
3.
Plant Mol Biol ; 113(6): 353-365, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37079121

RESUMO

A large part of the production of tomato plants is grafted. Although it has recently been described that cell walls play an important role in tomato graft healing, the spatiotemporal dynamics of cell wall changes in this critical process remains largely unknown. The aim of this work was to immunolocalize changes in the major cell wall matrix components of autograft union tissues throughout the course of healing, from 1 to 20 days after grafting (DAG). Homogalacturonan was de novo synthetized and deposited in the cut edges, displaying the low methyl-esterified homogalacturonan a stronger labelling. Labelling of galactan side chains of rhamnogalacturonan increased until 8 DAG, although remarkably a set of cells at the graft union did not show labelling for this epitope. Changes in xylan immunolocalization were associated to the xylem vasculature development throughout, while those of xyloglucan revealed early synthesis at the cut edges. Arabinogalactan proteins increased up to 8 DAG and showed scion-rootstock asymmetry, with a higher extent in the scion. The combination of these changes appears to be related with the success of the autograft, specifically facilitating the adhesion phase between scion-rootstock tissues. This knowledge paves the way for improved grafting using methods that facilitate appropriate changes in the time and space dynamics of these cell wall compounds.


Assuntos
Solanum lycopersicum , Polímeros/metabolismo , Autoenxertos , Parede Celular/metabolismo
4.
Plant Sci ; 320: 111286, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35643620

RESUMO

The field of plant-microbe interactions mediated by Biogenic Volatile Organic Compounds (BVOCs) still faces several limitations due to the lack of reliable equipment. We present a novel device designed to evaluate in vitro plant-microbe volatile interactions, the plant-microbe VOC Chamber. It was tested by evaluating the effects exerted on wheat development by volatiles from three Trichoderma harzianum strains, a wild type and two genetically modified strains; one expressing the tri5 gene, which leads to the synthesis and emission of the volatile trichodiene, and the other by silencing the erg1 gene, impairing ergosterol production. The wild type and the erg1-silenced strain enhanced fresh weight and length of the aerial part, but reduced root dry weight. Interestingly, no differences were found between them. Conversely, the tri5-transformant strain reduced root and aerial growth compared to the control and the other strains. No differences were observed regarding chlorophyll fluorescence quantum yield and leaf chlorophyll content, suggesting that the released BVOCs do not interfere with photosynthesis. The plant-microbe VOC Chamber proved to be a simple and reliable method to evaluate the in vitro effects of microbial BVOCs on plant development, perfect for the screening of microorganisms with interesting volatile traits.


Assuntos
Triticum , Compostos Orgânicos Voláteis , Clorofila , Hypocreales , Plantas , Compostos Orgânicos Voláteis/farmacologia
5.
Carbohydr Polym ; 276: 118781, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34823794

RESUMO

Plant cell walls provide essential functions in cell recognition, differentiation, adhesion and wound responses. Therefore, it is tempting to hypothesize that cell walls play a key role in grafting, but to date there are no quantitative studies targeting on cell wall changes during grafting. The aim of this work was to investigate the dynamics of pectic and hemicellulosic polysaccharides at the graft junctions in tomato homografts throughout the first 12 days after grafting. Cell wall fractionation, combined with ATR-FTIR spectroscopy and gas-chromatography, evidenced a marked increase in pectin content and a decrease in the degree of methyl-esterification of homogalacturonan in scion and rootstock throughout grafting. Also, recovery of tightly-bound hemicelluloses decreased at late times after grafting suggesting an increase of cross-linked hemicelluloses along grafting. In addition, immuno-dot assays revealed an increase in xyloglucan and arabinogalactan proteins in the first days after grafting, pointing to a presumed role in tissue adhesion-cohesion.


Assuntos
Parede Celular/metabolismo , Polissacarídeos/metabolismo , Solanum lycopersicum/metabolismo , Parede Celular/química , Cromatografia Gasosa/métodos , Glucanos/metabolismo , Solanum lycopersicum/química , Mucoproteínas/metabolismo , Pectinas/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Caules de Planta/metabolismo , Polissacarídeos/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Xilanos/metabolismo
6.
Plants (Basel) ; 10(8)2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34451558

RESUMO

The cell wall (CW) is a dynamic structure extensively remodeled during plant growth and under stress conditions, however little is known about its roles during the immune system priming, especially in crops. In order to shed light on such a process, we used the Phaseolus vulgaris-Pseudomonas syringae (Pph) pathosystem and the immune priming capacity of 2,6-dichloroisonicotinic acid (INA). In the first instance we confirmed that INA-pretreated plants were more resistant to Pph, which was in line with the enhanced production of H2O2 of the primed plants after elicitation with the peptide flg22. Thereafter, CWs from plants subjected to the different treatments (non- or Pph-inoculated on non- or INA-pretreated plants) were isolated to study their composition and properties. As a result, the Pph inoculation modified the bean CW to some extent, mostly the pectic component, but the CW was as vulnerable to enzymatic hydrolysis as in the case of non-inoculated plants. By contrast, the INA priming triggered a pronounced CW remodeling, both on the cellulosic and non-cellulosic polysaccharides, and CW proteins, which resulted in a CW that was more resistant to enzymatic hydrolysis. In conclusion, the increased bean resistance against Pph produced by INA priming can be explained, at least partially, by a drastic CW remodeling.

7.
BMC Plant Biol ; 21(1): 251, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34078286

RESUMO

BACKGROUND: Besides the use of maize grain as food and feed, maize stover can be a profitable by-product for cellulosic ethanol production, whereas the whole plant can be used for silage production. However, yield is reduced by pest damages, stem corn borers being one of the most important yield constraints. Overall, cell wall composition is key in determining the quality of maize biomass, as well as pest resistance. This study aims to evaluate the composition of the four cell wall fractions (cellulose, hemicellulose, lignin and hydroxycinnamates) in diverse maize genotypes and to understand how this composition influences the resistance to pests, ethanol capacity and digestibility. RESULTS: The following results can be highlighted: (i) pests' resistant materials may show cell walls with low p-coumaric acid and low hemicellulose content; (ii) inbred lines showing cell walls with high cellulose content and high diferulate cross-linking may present higher performance for ethanol production; (iii) and inbreds with enhanced digestibility may have cell walls poor in neutral detergent fibre and diferulates, combined with a lignin polymer composition richer in G subunits. CONCLUSIONS: Results evidence that there is no maize cell wall ideotype among the tested for optimal performance for various uses, and maize plants should be specifically bred for each particular application.


Assuntos
Parede Celular/química , Endogamia , Zea mays/genética , Zea mays/fisiologia , Parede Celular/fisiologia , Celulose/química , Celulose/metabolismo , Ácidos Cumáricos , Lignina/química , Lignina/metabolismo , Polissacarídeos/química , Polissacarídeos/metabolismo
8.
Plant Sci ; 307: 110882, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33902850

RESUMO

Lodging is one of the causes of maize (Zea mays L.) production losses worldwide and, at least, the resistance to stalk lodging has been positively correlated with stalk strength. In order to elucidate the putative relationship between cell wall, stalk strength and lodging resistance, twelve maize inbreds varying in rind penetration strength and lodging resistance were characterized for cell wall composition and structure. Stepwise multiple regression indicates that H lignin subunits confer a greater rind penetration strength. Besides, the predictive model for lodging showed that a high ferulic acid content increases the resistance to lodging, whereas those of diferulates decrease it. These outcomes highlight that the strength and lodging susceptibility of maize stems may be conditioned by structural features of cell wall rather than by the net amount of cellulose, hemicelluloses and lignin. The results presented here provide biotechnological targets in breeding programs aimed at improving lodging in maize.


Assuntos
Parede Celular/química , Parede Celular/fisiologia , Caules de Planta/química , Caules de Planta/crescimento & desenvolvimento , Zea mays/química , Zea mays/crescimento & desenvolvimento , Zea mays/genética , Parede Celular/genética , Produtos Agrícolas/química , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Resistência à Doença/genética , Resistência à Doença/fisiologia , Variação Genética , Genótipo , Fenótipo , Caules de Planta/genética
9.
Plants (Basel) ; 9(11)2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33153061

RESUMO

Despite the importance of grafting in horticultural crops such as tomato (Solanum lycopersicum L.), the structural changes that occur during the graft establishment are little understood. Using histological techniques, the present work examines the time course of changes on the anatomical structure of the graft junction in functional tomato homografts and compares it to that of heterografts and non-functional grafts. No apparent differences were detected between homo- and heterografts, showing similar tissue development. At 10 days after grafting, the cell walls of the scion and rootstock in the area of the graft junction were thicker than usual. Undifferentiated cells and new vascular tissue emerged from the pre-existing vasculature. Adventitious roots appeared mainly on the scion, arising from the pre-existing vasculature. At 20 days, more pronounced vascular tissue was visible, along with large areas showing vascular connection. At 210 days, vestiges of the changes undergone in graft development were still visible. Generally, non-functional grafts presented layers of necrotic remains and deposition of cell wall material in the cut edges, impeding the suitable scion-rootstock connection. Our results show that accurate changes in pre-existing vasculature and the cell walls of the adhesion line are crucial to the development of functional grafts.

10.
Molecules ; 25(14)2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32679820

RESUMO

Plant cell and organ cultures of Helianthella quinquenervis, a medicinal plant whose roots are used by the Tarahumara Indians of Chihuahua, Mexico, to relieve several ailments, were established to identify and quantify some chromenes with biological activity, such as encecalin, and to evaluate their potential for biotechnological production. Gas chromatography-mass spectrometry (GC-MS) analysis corroborated the presence of quantifiable amounts of encecalin in H. quinquenervis cell cultures (callus and cell suspensions). In addition, hairy roots were obtained through three transformation protocols (prick, 45-s sonication and co-culture), using wild type Agrobacterium rhizogenes A4. After three months, cocultivation achieved the highest percentage of transformation (66%), and a comparable production (FW) of encecalin (110 µg/g) than the sonication assay (120 µg/g), both giving far higher yields than the prick assay (19 µg/g). Stable integration of rolC and aux1 genes in the transformed roots was confirmed by polymerase chain reaction (PCR). Hairy roots from cocultivation (six months-old) accumulated as much as 1086 µg/g (FW) of encecalin, over three times higher than the cell suspension cultures. The production of encecalin varied with growth kinetics, being higher at the stationary phase. This is the first report of encecalin production in hairy roots of H. quinquenervis, demonstrating the potential for a future biotechnological production of chromenes.


Assuntos
Cistaceae/metabolismo , Compostos Fitoquímicos/metabolismo , Raízes de Plantas/química , Plantas Medicinais/metabolismo , Agrobacterium , Células Cultivadas , Cromatografia Gasosa-Espectrometria de Massas , Germinação , Compostos Fitoquímicos/biossíntese , Células Vegetais/metabolismo , Desenvolvimento Vegetal , Reação em Cadeia da Polimerase , Análise Espectral , Transformação Genética
11.
Front Plant Sci ; 11: 900, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32676088

RESUMO

Class III plant peroxidases (Prxs) are involved in the oxidative polymerization of lignins. Zinnia elegans Jacq. Basic peroxidase (ZePrx) has been previously characterized as capable of catalyzing this reaction in vitro and the role in lignin biosynthesis of several of its Arabidopsis thaliana homologous has been previously confirmed. In the present work, ZePrx was overexpressed in Nicotiana tabacum to further characterize its function in planta with particular attention to its involvement in lignin biosynthesis. Since Prxs are known to alter ROS levels by using them as electron acceptor or producing them in their catalytic activity, the impact of this overexpression in redox homeostasis was studied by analyzing the metabolites and enzymes of the ascorbate-glutathione cycle. In relation to the modification induced by ZePrx overexpression in lignin composition and cellular metabolism, the carbohydrate composition of the cell wall as well as overall gene expression through RNA-Seq were analyzed. The obtained results indicate that the overexpression of ZePrx caused an increase in syringyl lignin in cell wall stems, suggesting that ZePrx is relevant for the oxidation of sinapyl alcohol during lignin biosynthesis, coherently with its S-peroxidase nature. The increase in the glucose content of the cell wall and the reduction of the expression of several genes involved in secondary cell wall biosynthesis suggests the occurrence of a possible compensatory response to maintain cell wall properties. The perturbation of cellular redox homeostasis occurring as a consequence of ZePrx overexpression was kept under control by an increase in APX activity and a reduction in ascorbate redox state. In conclusion, our results confirm the role of ZePrx in lignin biosynthesis and highlight that its activity alters cellular pathways putatively aimed at maintaining redox homeostasis.

12.
Phytochemistry ; 170: 112219, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31794882

RESUMO

The habituation of cultured cells to cellulose biosynthesis inhibitors such as dichlobenil (dichlorobenzonitrile, DCB) has proven a valuable tool to elucidate the mechanisms involved in plant cell wall structural plasticity. Our group has demonstrated that maize cells cope with DCB through a modified cell wall in which cellulose is replaced by a more extensive network of highly cross-linked feruloylated arabinoxylans. In order to gain further insight into the contribution of phenolics to the early remodelling of cellulose-deficient cell walls, a comparative HPLC-PAD analysis was carried out of hydroxycinnamates esterified into nascent and cell wall polysaccharides obtained from non-habituated (NH) and habituated to low DCB concentrations (1.5 µM; H) maize suspension-cultured cells. Incipient DCB-habituated cell walls showed significantly higher levels of esterified ferulic acid and p-coumaric acid throughout the culture cycle. In terms of cell wall fortification, ferulic acid is associated to arabinoxylan crosslinking whereas the increase of p-coumaric suggests an early lignification response. As expected, the level of hydroxycinnamates esterified into nascent polysaccharides was also higher in DCB-habituated cells indicating an overexpression of phenylpropanoid pathway. Due to their key role in cell wall strengthening, special attention was paid into the dimerization pattern of ferulic acid. A quantitative comparison of diferulate dehydrodimers (DFAs) between cell lines and cell compartments revealed that an extra dimerization took place in H cells when both nascent and mature cell wall polysaccharides were analysed. In addition, qualitative differences in the ferulic acid coupling pattern were detected in H cells, allowing us to suggest that 8-O-4'-DFA and 8-5'-DFA featured the ferulic acid dimerization when it occurred in the protoplasmic and cell wall fractions respectively. Both qualitative and quantitative differences in the phenolic profile between NH and H cells point to a regioselectivity in the ferulate dehydrodimerization.


Assuntos
Parede Celular/metabolismo , Celulose/metabolismo , Fenóis/metabolismo , Compostos Fitoquímicos/metabolismo , Zea mays/química , Parede Celular/química , Celulose/química , Fenóis/química , Compostos Fitoquímicos/química , Zea mays/citologia , Zea mays/metabolismo
13.
Physiol Plant ; 164(1): 45-55, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29464727

RESUMO

Maize (Zea mays L.) suspension-cultured cells habituated to a cellulose biosynthesis inhibitor 2,6-dichlorobenzonitrile (DCB) have a modified cell wall, in which the reduction in the cellulose content is compensated by a network of highly cross-linked feruloylated arabinoxylans and the deposition of lignin-like polymers. For both arabinoxylan cross-linking and lignin polymerization, class III peroxidases (POXs) have been demonstrated to have a prominent role. For the first time, a comparative study of POX activity and isoforms in control and cellulose-impaired cells has been addressed, also taking into account their cellular distribution in different compartments. Proteins from the spent medium (SM), soluble cellular (SC), ionically (ICW) and covalently bound cell wall protein fractions were assayed for total and specific peroxidase activity by using coniferyl and sinapyl alcohol and ferulic acid as substrates. The isoPOX profile was obtained by isoelectric focusing. POX activity was higher in DCB-habituated than in non-habituated cells in all protein fractions at all cell culture stages. For all substrates assayed, SC and ICW fractions showed higher activity at the early log growth phase than at the late log phase. However, the highest POX activity in the spent medium was found at the late log phase. According to the isoPOX profiles, the highest diversity of isoPOXs was detected in the ICW and SM protein fractions. The latter fraction contained isoPOXs with higher activity in DCB-habituated cells. Some of the isoPOXs detected could be involved in cross-linking of arabinoxylans and in the lignin-like polymer formation in DCB-habituated cells.


Assuntos
Peroxidases/metabolismo , Zea mays/metabolismo , Celulose/metabolismo , Lignina/metabolismo , Nitrilas/metabolismo
14.
Planta ; 247(4): 987-999, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29330614

RESUMO

MAIN CONCLUSION: Ancymidol inhibits the incorporation of cellulose into cell walls of maize cell cultures in a gibberellin-independent manner, impairing cell growth; the reduction in the cellulose content is compensated with xylans. Ancymidol is a plant growth retardant which impairs gibberellin biosynthesis. It has been reported to inhibit cellulose synthesis by tobacco cells, based on its cell-malforming effects. To ascertain the putative role of ancymidol as a cellulose biosynthesis inhibitor, we conducted a biochemical study of its effect on cell growth and cell wall metabolism in maize cultured cells. Ancymidol concentrations ≤ 500 µM progressively reduced cell growth and induced globular cell shape without affecting cell viability. However, cell growth and viability were strongly reduced by ancymidol concentrations ≥ 1.5 mM. The I50 value for the effect of ancymidol on FW gain was 658 µM. A reversal of the inhibitory effects on cell growth was observed when 500 µM ancymidol-treated cultures were supplemented with 100 µM GA3. Ancymidol impaired the accumulation of cellulose in cell walls, as monitored by FTIR spectroscopy. Cells treated with 500 µM ancymidol showed a ~ 60% reduction in cellulose content, with no further change as the ancymidol concentration increased. Cellulose content was partially restored by 100 µM GA3. Radiolabeling experiments confirmed that ancymidol reduced the incorporation of [14C]glucose into α-cellulose and this reduction was not reverted by the simultaneous application of GA3. RT-PCR analysis indicated that the cellulose biosynthesis inhibition caused by ancymidol is not related to a downregulation of ZmCesA gene expression. Additionally, ancymidol treatment increased the incorporation of [3H]arabinose into a hemicellulose-enriched fraction, and up-regulated ZmIRX9 and ZmIRX10L gene expression, indicating an enhancement in the biosynthesis of arabinoxylans as a compensatory response to cellulose reduction.


Assuntos
Parede Celular/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Pirimidinas/farmacologia , Zea mays/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Celulose/metabolismo , Relação Dose-Resposta a Droga , Giberelinas/farmacologia , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo
15.
J Agric Food Chem ; 65(42): 9180-9185, 2017 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-28968115

RESUMO

The Mediterranean corn borer (MCB), Sesamia nonagrioides Lef, is an important pest of maize in temperate areas, causing significant stalk lodging and yield losses. The main goals of this study were to determine possible changes in chemical traits (phenols, flavonoids, anthocyanins, sugars, fibers, and lignin) during plant development after the flowering stage and to assess how those traits may differ in diverse genotypes of maize, such as MCB resistant and susceptible. Higher values for some particular traits in more mature tissues seemed to increase their effectiveness against the MCB attack. A decreased amount of borer damage in the field was recorded in the resistant inbred line and in older tissues (7.90 cm vs 31.70 cm as the mean for the stalk tunnel length). In accordance with these results, the resistant inbred line showed a higher degree of hemicellulose cross-linkage (due to ferulic and diferulic acids), higher soluble sugar content, and higher stalk strength. The use of resistant varieties and early sowings is highly recommended as an integrated approach to reduce the yield losses produced by this pest.


Assuntos
Mariposas/fisiologia , Doenças das Plantas/imunologia , Doenças das Plantas/parasitologia , Zea mays/química , Zea mays/crescimento & desenvolvimento , Animais , Antocianinas/análise , Antocianinas/metabolismo , Genótipo , Larva/crescimento & desenvolvimento , Larva/microbiologia , Mariposas/crescimento & desenvolvimento , Fenóis/análise , Fenóis/metabolismo , Caules de Planta/química , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/imunologia , Caules de Planta/parasitologia , Zea mays/imunologia , Zea mays/parasitologia
16.
Carbohydr Polym ; 175: 679-688, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28917917

RESUMO

Second generation bioethanol produced from lignocellulosic biomass is attracting attention as an alternative energy source. In this study, a detailed knowledge of the composition and structure of common cattail (Typha latifolia L.) cell wall polysaccharides, obtained from stem or leaves, has been conducted using a wide set of techniques to evaluate this species as a potential bioethanol feedstock. Our results showed that common cattail cellulose content was high for plants in the order Poales and was accompanied by a small amount of cross-linked polysaccharides. A high degree of arabinose-substitution in xylans, a high syringyl/guaiacyl ratio in lignin and a low level of cell wall crystallinity could yield a good performance for lignocellulose saccharification. These results identify common cattail as a promising plant for use as potential bioethanol feedstock. To the best of our knowledge, this is the first in-depth analysis to be conducted of lignocellulosic material from common cattail.

17.
J Integr Plant Biol ; 59(7): 475-495, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28474461

RESUMO

As a consequence of the habituation to low levels of dichlobenil (DCB), cultured maize cells presented an altered hemicellulose cell fate with a lower proportion of strongly wall-bound hemicelluloses and an increase in soluble extracellular polymers released into the culture medium. The aim of this study was to investigate the relative molecular mass distributions of polysaccharides as well as phenolic metabolism in cells habituated to low levels of DCB (1.5 µM). Generally, cell wall bound hemicelluloses and sloughed polymers from habituated cells were more homogeneously sized and had a lower weight-average relative molecular mass. In addition, polysaccharides underwent massive cross-linking after being secreted into the cell wall, but this cross-linking was less pronounced in habituated cells than in non-habituated ones. However, when relativized, ferulic acid and p-coumaric acid contents were higher in this habituated cell line. Feasibly, cells habituated to low levels of DCB synthesized molecules with a lower weight-average relative molecular mass, although cross-linked, as a part of their strategy to compensate for the lack of cellulose.


Assuntos
Polissacarídeos/metabolismo , Zea mays/metabolismo , Celulose/metabolismo , Ácidos Cumáricos/metabolismo , Nitrilas/farmacologia , Fenóis/metabolismo , Propionatos/metabolismo , Zea mays/efeitos dos fármacos
18.
Plant Cell Physiol ; 58(2): 240-255, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28013276

RESUMO

Caffeoyl coenzyme A 3-O-methyltransferase (CCoAOMT) and caffeic acid-O-methyltransferase (COMT) are key enzymes in the biosynthesis of coniferyl and sinapyl alcohols, the precursors of guaiacyl (G) and syringyl (S) lignin subunits. The function of these enzymes was characterized in single and double mutant maize plants. In this work, we determined that the comt (brown-midrib 3) mutant plants display a reduction of the flavonolignin unit derived from tricin (a dimethylated flavone), demonstrating that COMT is a key enzyme involved in the synthesis of this compound. In contrast, the ccoaomt1 mutants display a wild-type amount of tricin, suggesting that CCoAOMT1 is not essential for the synthesis of this compound. Based on our data, we suggest that CCoAOMT1 is involved in lignin biosynthesis at least in midribs. The phenotype of ccoaomt1 mutant plants displays no alterations, and their lignin content and composition remain unchanged. On the other hand, the ccoaomt1 comt mutant displays phenotypic and lignin alterations similar to those already described for the comt mutant. Although stems from the three mutants display a similar increase of hemicelluloses, the effect on cell wall degradability varies, the cell walls of ccoaomt1 being the most degradable. This suggests that the positive effect of lignin reduction on cell wall degradability of comt and ccoaomt1 comt mutants is counteracted by changes occurring in lignin composition, such as the decreased S/G ratio. In addition, the role of the flavonolignin unit derived from tricin in cell wall degradability is also discussed.


Assuntos
Parede Celular/metabolismo , Metiltransferases/metabolismo , Proteínas de Plantas/metabolismo , Polímeros/metabolismo , Zea mays/metabolismo , Flavonoides/metabolismo , Metiltransferases/genética , Mutação , Proteínas de Plantas/genética , Polissacarídeos/metabolismo , Zea mays/enzimologia , Zea mays/genética
19.
Plant Physiol Biochem ; 107: 257-263, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27318799

RESUMO

The habituation of bean cells to quinclorac did not rely on cell wall modifications, contrary to what it was previously observed for the well-known cellulose biosynthesis inhibitors dichlobenil or isoxaben. The aim of the present study was to investigate whether or not the bean cells habituation to quinclorac is related to an enhancement of antioxidant activities involved in the scavenging capacity of reactive oxygen species. Treating non-habituated bean calluses with 10 µM quinclorac reduced the relative growth rate and induced a two-fold increase in lipid peroxidation. However, the exposition of quinclorac-habituated cells to a concentration of quinclorac up to 30 µM neither affected their growth rate nor increased their lipid peroxidation levels. Quinclorac-habituated calluses had significantly higher constitutive levels of three antioxidant activities (class-III peroxidase, glutathione reductase, and superoxide dismutase) than those observed in non-habituated calluses, and the treatment of habituated calluses with 30 µM quinclorac significantly increased the level of class III-peroxidase and superoxide dismutase. The results reported here indicate that the process of habituation to quinclorac in bean callus-cultured cells is related, at least partially, to the development of a stable antioxidant capacity that enables them to cope with the oxidative stress caused by quinclorac. Class-III peroxidase and superoxide dismutase activities could play a major role in the quinclorac-habituation. Changes in the antioxidant status of bean cells were stable, since the increase in the antioxidant activities were maintained in quinclorac-dehabituated cells.


Assuntos
Antioxidantes/metabolismo , Phaseolus/citologia , Phaseolus/metabolismo , Quinolinas/farmacologia , Células Cultivadas , Eletroforese em Gel de Poliacrilamida , Glutationa Redutase/metabolismo , Isoenzimas/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Peroxidase/metabolismo , Phaseolus/efeitos dos fármacos , Phaseolus/crescimento & desenvolvimento , Superóxido Dismutase/metabolismo
20.
Physiol Plant ; 157(2): 193-204, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26612685

RESUMO

The cellulose biosynthesis inhibitor 2,6-dichlorobenzonitrile (DCB) has been widely used to gain insights into cell wall composition and architecture. Studies of changes during early habituation to DCB can provide information on mechanisms that allow tolerance/habituation to DCB. In this context, maize-cultured cells with a reduced amount of cellulose (∼20%) were obtained by stepwise habituation to low DCB concentrations. The results reported here attempt to elucidate the putative role of an antioxidant strategy during incipient habituation. The short-term exposure to DCB of non-habituated maize-cultured cells induced a substantial increase in oxidative damage. Concomitantly, short-term treated cells presented an increase in class III peroxidase and glutathione S-transferase activities and total glutathione content. Maize cells habituated to 0.3-1 µM DCB (incipient habituation) were characterized by a reduction in the relative cell growth rate, an enhancement of ascorbate peroxidase and class III peroxidase activities, and a net increment in total glutathione content. Moreover, these cell lines showed increased levels of glutathione S-transferase activity. Changes in antioxidant/conjugation status enabled 0.3 and 0.5 µM DCB-habituated cells to control lipid peroxidation levels, but this was not the case of maize cells habituated to 1 µM DCB, which despite showing an increased antioxidant capacity were not capable of reducing the oxidative damage to control levels. The results reported here confirm that exposure and incipient habituation of maize cells to DCB are associated with an enhancement in antioxidant/conjugation activities which could play a role in incipient DCB habituation of maize-cultured cells.


Assuntos
Adaptação Fisiológica/efeitos dos fármacos , Antioxidantes/metabolismo , Celulose/metabolismo , Nitrilas/farmacologia , Zea mays/fisiologia , Ascorbato Peroxidases/efeitos dos fármacos , Ascorbato Peroxidases/metabolismo , Parede Celular/metabolismo , Células Cultivadas , Glutationa Transferase/efeitos dos fármacos , Glutationa Transferase/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Peroxidases/efeitos dos fármacos , Peroxidases/metabolismo , Proteínas de Plantas/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Zea mays/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...