Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 301: 113751, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34628283

RESUMO

Heat-related mortality is one of the leading causes of weather-related deaths in the United States. With changing climates and an aging population, effective adaptive strategies to address public health and environmental justice issues associated with extreme heat will be increasingly important. One effective adaptive strategy for reducing heat-related mortality is increasing tree cover. Designing such a strategy requires decision-support tools that provide spatial and temporal information about impacts. We apply such a tool to estimate spatially and temporally explicit reductions in temperature and mortality associated with a 10% increase in tree cover in 10 U.S. cities with varying climatic, demographic, and land cover conditions. Two heat metrics were applied to represent tree impacts on moderately and extremely hot days (relative to historical conditions). Increasing tree cover by 10% reduced estimated heat-related mortality in cities significantly, with total impacts generally greatest in the most populated cities. Mortality reductions vary widely across cities, ranging from approximately 50 fewer deaths in Salt Lake City to about 3800 fewer deaths in New York City. This variation is due to differences in demographics, land cover, and local climatic conditions. In terms of per capita estimated impacts, hotter and drier cities experience higher percentage reductions in mortality due to increased tree cover across the season. Phoenix potentially benefits the most from increased tree cover, with an estimated 22% reduction in mortality from baseline levels. In cooler cities such as Minneapolis, trees can reduce mortality significantly on days that are extremely hot relative to historical conditions and therefore help mitigate impacts during heat wave conditions. Recent studies project highest increases in heat-related mortality in the cooler cities, so our findings have important implications for adaptation planning. Our estimated spatial and temporal distributions of mortality reductions for each city provide crucial information needed for promoting environmental justice and equity. More broadly, the methods and model can be applied by both urban planners and the public health community for designing targeted, effective policies to reduce heat-related mortality. Additionally, land use managers can use this information to optimize tree plantings. Public stakeholders can also use these impact estimates for advocacy.


Assuntos
Temperatura Alta , Árvores , Cidades , Mortalidade , Saúde Pública , Estações do Ano , Estados Unidos
2.
Nat Commun ; 9(1): 1160, 2018 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-29563541

RESUMO

Growth in urban populations creates opportunities for urban forests to deliver ecosystem services critical to human wellbeing and biodiversity. Our challenge is to strategically expand urban forests and provide our international communities, particularly the vulnerable, with healthier, happier, and enriched lives.


Assuntos
Conservação dos Recursos Naturais/tendências , Agricultura Florestal/organização & administração , Florestas , Qualidade de Vida/psicologia , Árvores/fisiologia , Biodiversidade , Dióxido de Carbono/química , Cidades , Ecossistema , Humanos , Oxigênio/química , Recreação/psicologia , Urbanização
3.
Ground Water ; 53(6): 859-71, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25408169

RESUMO

While restoring hyporheic flowpaths has been cited as a benefit to stream restoration structures, little documentation exists confirming that constructed restoration structures induce comparable hyporheic exchange to natural stream features. This study compares a stream restoration structure (cross-vane) to a natural feature (riffle) concurrently in the same stream reach using time-lapsed electrical resistivity (ER) tomography. Using this hydrogeophysical approach, we were able to quantify hyporheic extent and transport beneath the cross-vane structure and the riffle. We interpret from the geophysical data that the cross-vane and the natural riffle induced spatially and temporally unique hyporheic extent and transport, and the cross-vane created both spatially larger and temporally longer hyporheic flowpaths than the natural riffle. Tracer from the 4.67-h injection was detected along flowpaths for 4.6 h at the cross-vane and 4.2 h at the riffle. The spatial extent of the hyporheic zone at the cross-vane was 12% larger than that at the riffle. We compare ER results of this study to vertical fluxes calculated from temperature profiles and conclude significant differences in the interpretation of hyporheic transport from these different field techniques. Results of this study demonstrate a high degree of heterogeneity in transport metrics at both the cross-vane and the riffle and differences between the hyporheic flowpath networks at the two different features. Our results suggest that restoration structures may be capable of creating sufficient exchange flux and timescales of transport to achieve the same ecological functions as natural features, but engineering of the physical and biogeochemical environment may be necessary to realize these benefits.


Assuntos
Recuperação e Remediação Ambiental/métodos , Rios , Movimentos da Água , Hidrologia/métodos , Temperatura
4.
Environ Manage ; 29(6): 729-35, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-11992167

RESUMO

Differences between scientist and policy-maker response types and times, or the "how" and "when" of action, constrain effective water resource management in suburbanizing watersheds. Policy-makers are often rushed to find a single policy that can be applied across an entire, homogeneous, geopolitical region, whereas scientists undertake multiyear research projects to appreciate the complex interactions occurring within heterogeneous catchments. As a result, watershed management is often practiced with science and policy out of synch. Meanwhile, development pressures in suburban watersheds create changes in the social and physical fabric and pose a moving target for science and policy. Recent and anticipated advances in the scientific understanding of urbanized catchment hydrology and pollutant transport suggest that management should become increasingly sensitive to spatial heterogeneities in watershed features, such as soil types, terrain slopes, and seasonal watertable profiles. Toward this end, policy-makers should encourage funding scientific research that characterizes the impacts of these watershed heterogeneities within a geopolitical zoning and development framework.


Assuntos
Conservação dos Recursos Naturais , Relações Interprofissionais , Formulação de Políticas , Política Pública , Abastecimento de Água , Cidades , Geografia , Humanos , Política , Ciência , Movimentos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...