Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Educ Psychol ; 93 Suppl 2: 305-317, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36437516

RESUMO

BACKGROUND & AIMS: Cognitive load theory assumes that the higher the learner's prior knowledge (i.e., the more expert the learner), the lower the intrinsic cognitive load (complexity) experienced for a given problem. While this is the case in many scenarios, there can be cases in which the converse is also true, resulting in more expert learners reporting higher intrinsic cognitive load than novices for the same problem. This can occur in relation to problems involving complex systems (e.g., ecological systems), for which novices' problem representations may underestimate problem complexity and therefore report lower intrinsic load than experts. This finding is borne out in the current paper. SAMPLES, METHODS & RESULTS: In Study 1 with 118 participants from the Black Forest area in Germany, participants with higher levels of forestry and ecological expertise evaluated a problem relating to the restructuring of the Black Forest to adapt to climate change as more complex than did novices. In Study 2 (within-subjects design, n = 66 primary-school students), we conceptually replicated this finding in a domain more typical of cognitive load theory studies, mathematics. We found that higher prior knowledge also reduced the underestimation of the complexity of 'tricky', but frequently used, mathematics word problems. CONCLUSION: Our findings suggest that cognitive load theory's assumptions about intrinsic load and prior knowledge should be refined, as there seems to exist a sub-set of problem-solving tasks for which the traditional relationship between prior knowledge and reported ICL is reversed.


Assuntos
Cognição , Resolução de Problemas , Humanos , Estudantes , Mudança Climática , Alemanha
2.
Front Psychol ; 6: 1054, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26257696

RESUMO

The testing effect-more learning by testing as compared to restudying-is a well-established finding. A typical testing procedure in the context of meaningful learning comprises a recall task after an initial study phase. Different theories refer to different mechanisms when explaining the positive effects of such recall tasks. In the context of learning from expository texts, we tested three mechanisms as suggested by a variety of prominent approaches: the elaborative-retrieval theory, the theory of transfer-appropriate processing, and the unspecific-goal perspective. We experimentally varied the type of testing task (short-answer task vs. free-recall task, both compared to a restudy task) in a within-subject design (N = 47 university students). We replicated the testing effect. We found no evidence for a transfer-appropriate processing effect or an unspecific-goal effect. The testing effect disappeared when statistically controlling for mental effort. Initially non-tested material was also fostered by testing (spreading activation effect). These findings indicate that testing helps learning when learners must invest substantial mental effort, as suggested by the elaborative retrieval theory. For educational purposes, testing tasks should be assigned that require the learners to invest substantial mental effort.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...