Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 258, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31937812

RESUMO

Polymers such as polycaprolactone (PCL) possess biodegradability, biocompatibility and affinity with other organic media that makes them suitable for biomedical applications. In this work, a novel biocomposite coating was synthesised by mixing PCL with layers of calcium phosphate (hydroxyapatite, brushite and monetite) from a biomineral called otolith extracted from Teleost fish (Plagioscion Squamosissimus) and multiwalled carbon nanotubes in different concentrations (0.5, 1.0 and 1.5 g/L). The biocomposite coating was deposited on an osteosynthesis material Ti6Al4V by spin coating and various tests such as Fourier transformation infrared spectroscopy (FTIR), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), scratch tests, MTT reduction cytotoxicity, HOS cell bioactivity (human osteosarcoma) by alkaline phosphatase (ALP) and fluorescence microscopy were performed to comprehensively evaluate the newly developed biocoating. It was found that an increase in the concentration of carbon nanotube induced microstructural phase changes of calcium phosphate (CP) leading to the formation of brushite, monetite and hydroxyapatite. While we discovered that an increase in the concentration of carbon nanotube generally improves the adhesion of the coating with the substrate, a certain threshold exists such that the best deposition surfaces were obtained as PCL/CP/CNT 0.0 g/L and PCL/CP/CNT 0.5 g/L.


Assuntos
Materiais Revestidos Biocompatíveis/química , Peixes/metabolismo , Membrana dos Otólitos/metabolismo , Fosfatase Alcalina/metabolismo , Ligas , Animais , Fosfatos de Cálcio/química , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/toxicidade , Humanos , Teste de Materiais , Microscopia Eletrônica de Varredura , Nanotubos de Carbono/química , Membrana dos Otólitos/química , Poliésteres/química , Espectroscopia de Infravermelho com Transformada de Fourier , Titânio/química
2.
J Mech Behav Biomed Mater ; 97: 126-137, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31108369

RESUMO

Use of an alpha-beta (multiphase HCP-BCC) titanium alloy, Ti6Al4V, is ubiquitous in a wide range of engineering applications. The previous decade of finite element analysis research on various titanium alloys for numerous biomedical applications especially in the field of orthopedics has led to the development of more than half a dozen material constitutive models, with no comparison available between them. Part of this problem stems from the complexity of developing a vectorised user-defined material subroutine (VUMAT) and the different conditions (strain rate, temperature and composition of material) in which these models are experimentally informed. This paper examines the extant literature to review these models and provides quantitative benchmarking against the tabulated material model and a power law model of Ti6Al4V taking the test case of a uniaxial tensile and cutting simulation.


Assuntos
Materiais Biocompatíveis/química , Engenharia/normas , Teste de Materiais/métodos , Titânio/química , Algoritmos , Ligas , Pressão , Software , Estresse Mecânico , Propriedades de Superfície , Resistência à Tração
3.
Sci Rep ; 6: 32171, 2016 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-27571937

RESUMO

The effect of silver on the phase transition and microstructure of titanium oxide films grown by pulsed cathodic arc had been investigated by XRD, SEM and Raman spectroscopy. Following successive thermal annealing up to 1000 °C, microstructural analysis of annealed Ag-TiO2 films reveals that the incorporation of Ag nanoparticles strongly affects the transition temperature from the initial metastable amorphous phase to anatase and stable rutile phase. An increase of silver content into TiO2 matrix inhibits the amorphous to anatase phase transition, raising its temperature boundary and, simultaneously reduces the transition temperature to promote rutile structure at lower value of 600 °C. The results are interpreted in terms of the steric effects produced by agglomeration of Ag atoms into larger clusters following annealing which hinders diffusion of Ti and O ions for anatase formation and constrains the volume available for the anatase lattice, thus disrupting its structure to form rutile phase. The effect of silver on the optical and wetting properties of TiO2 was evaluated to demonstrate its improved photocatalytic performance.

4.
Faraday Discuss ; 156: 267-77; discussion 293-309, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23285634

RESUMO

Adaptive TiAlCrSiYN-based coatings show promise under the extreme tribological conditions of dry ultra-high-speed (500-700 m min-1) machining of hardened tool steels. During high speed machining, protective sapphire and mullite-like tribo-films form on the surface of TiAlCrSiYN-based coatings resulting in beneficial heat-redistribution in the cutting zone. XRD and HRTEM data show that the tribo-films act as a thermal barrier creating a strong thermal gradient. The data are consistent with the temperature decreasing from approximately 1100-1200 degrees C at the outer surface to approximately 600 degrees C at the tribo-film/coating interface. The mechanical properties of the multilayer TiAICrSiYN/TiA1CrN coating were measured by high temperature nanoindentation. It retains relatively high hardness (21 GPa) at 600 degrees C. The nanomechanical properties of the underlying coating layer provide a stable low wear environment for the tribo-films to form and regenerate so it can sustain high temperatures under operation (600 degrees C). This combination of characteristics explains the high wear resistance of the multilayer TiAlCrSiYN/TiAICrN coating under extreme operating conditions. TiAlCrSiYN and TiAlCrN monolayer coatings have a less effective combination of adaptability and mechanical characteristics and therefore lower tool life. The microstructural reasons for different optimum hardness and plasticity between monolayer and multilayer coatings are discussed.

5.
Sci Technol Adv Mater ; 13(4): 043001, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27877499

RESUMO

Adaptive wear-resistant coatings produced by physical vapor deposition (PVD) are a relatively new generation of coatings which are attracting attention in the development of nanostructured materials for extreme tribological applications. An excellent example of such extreme operating conditions is high performance machining of hard-to-cut materials. The adaptive characteristics of such coatings develop fully during interaction with the severe environment. Modern adaptive coatings could be regarded as hierarchical surface-engineered nanostructural materials. They exhibit dynamic hierarchy on two major structural scales: (a) nanoscale surface layers of protective tribofilms generated during friction and (b) an underlying nano/microscaled layer. The tribofilms are responsible for some critical nanoscale effects that strongly impact the wear resistance of adaptive coatings. A new direction in nanomaterial research is discussed: compositional and microstructural optimization of the dynamically regenerating nanoscaled tribofilms on the surface of the adaptive coatings during friction. In this review we demonstrate the correlation between the microstructure, physical, chemical and micromechanical properties of hard coatings in their dynamic interaction (adaptation) with environment and the involvement of complex natural processes associated with self-organization during friction. Major physical, chemical and mechanical characteristics of the adaptive coating, which play a significant role in its operating properties, such as enhanced mass transfer, and the ability of the layer to provide dissipation and accumulation of frictional energy during operation are presented as well. Strategies for adaptive nanostructural coating design that enhance beneficial natural processes are outlined. The coatings exhibit emergent behavior during operation when their improved features work as a whole. In this way, as higher-ordered systems, they achieve multifunctionality and high wear resistance under extreme tribological conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...