Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Heart Circ Physiol ; 292(3): H1328-35, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17071724

RESUMO

Xanthine oxidase (XO) activity contributes to both abnormal excitation-contraction (EC) coupling and cardiac remodeling in heart failure (HF). beta-Adrenergic hyporesponsiveness and abnormalities in Ca(2+) cycling proteins are mechanistically linked features of the HF phenotype. Accordingly, we hypothesized that XO influences beta-adrenergic responsiveness and expression of genes whose products participate in deranged EC coupling. We measured inotropic (dP/dt(max)), lusitropic (tau), and vascular (elastance; E(a)) responses to beta-adrenergic (beta-AR) stimulation with dobutamine in conscious dogs administered allopurinol (100 mg po daily) or placebo during a 4-wk induction of pacing HF. With HF induction, the decreases in both baseline and dobutamine-stimulated inotropic responses were offset by allopurinol. Additionally, allopurinol converted a vasoconstrictor effect to dobutamine to a vasodilator response and enhanced both lusitropic and preload reducing effects. To assess molecular correlates for this phenotype, we measured myocardial sarcoplasmic reticulum Ca(2+)-ATPase 2a (SERCA), phospholamban (PLB), phosphorylated PLB (P-PLB), and Na(+)/Ca(2+) transporter (NCX) gene expression and protein. Although SERCA mRNA and protein concentrations did not change with HF, both PLB and NCX were upregulated (P < 0.05). Additionally, P-PLB and protein kinase A activity were greatly reduced. Allopurinol ameliorated all of these molecular alterations and preserved the PLB-to-SERCA ratio. Preventing maladaptive alterations of Ca(2+) cycling proteins represents a novel mechanism for XO inhibition-mediated preservation of cardiac function in HF, raising the possibility that anti-oxidant therapies for HF may ameliorate transcriptional changes associated with adverse cardiac remodeling and beta-adrenergic hyporesponsiveness.


Assuntos
Alopurinol/uso terapêutico , Proteínas de Ligação ao Cálcio/metabolismo , Insuficiência Cardíaca/tratamento farmacológico , Alopurinol/farmacocinética , Animais , Cálcio , Modelos Animais de Doenças , Cães , Coração/efeitos dos fármacos , Coração/fisiopatologia , Contração Miocárdica/efeitos dos fármacos , Função Ventricular Esquerda/efeitos dos fármacos , Função Ventricular Esquerda/fisiologia , Xantina Oxidase/metabolismo
2.
J Am Coll Cardiol ; 48(10): 2116-24, 2006 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-17113001

RESUMO

OBJECTIVES: The purpose of this study was to test the hypothesis, with noninvasive multimodality imaging, that allogeneic mesenchymal stem cells (MSCs) produce and/or stimulate active cardiac regeneration in vivo after myocardial infarction (MI). BACKGROUND: Although intramyocardial injection of allogeneic MSCs improves global cardiac function after MI, the mechanism(s) underlying this phenomenon are incompletely understood. METHODS: We employed magnetic resonance imaging (MRI) and multi-detector computed tomography (MDCT) imaging in MSC-treated pigs (n = 10) and control subjects (n = 12) serially for a 2-month period after anterior MI. A sub-endocardial rim of tissue, demonstrated with MDCT, was assessed for regional contraction with MRI tagging. Rim thickness was also measured on gross pathological specimens, to confirm the findings of the MDCT imaging, and the size of cardiomyocytes was measured in the sub-endocardial rim and the non-infarct zone. RESULTS: Multi-detector computed tomography demonstrated increasing thickness of sub-endocardial viable myocardium in the infarct zone in MSC-treated animals (1.0 +/- 0.2 mm to 2.0 +/- 0.3 mm, 1 and 8 weeks after MI, respectively, p = 0.028, n = 4) and a corresponding reduction in infarct scar (5.1 +/- 0.5 mm to 3.6 +/- 0.2 mm, p = 0.044). No changes occurred in control subjects (n = 4). Tagging MRI demonstrated time-dependent recovery of active contractility paralleling new tissue appearance. This rim was composed of morphologically normal cardiomyocytes, which were smaller in MSC-treated versus control subjects (11.6 +/- 0.2 mum vs. 12.6 +/- 0.2 mum, p < 0.05). CONCLUSIONS: With serially obtained MRI and MDCT, we demonstrate in vivo reappearance of myocardial tissue in the MI zone accompanied by time-dependent restoration of contractile function. These data are consistent with a regenerative process, highlight the value of noninvasive multimodality imaging to assess the structural and functional basis for myocardial regenerative strategies, and have potential clinical applications.


Assuntos
Coração/fisiopatologia , Imageamento por Ressonância Magnética , Transplante de Células-Tronco Mesenquimais , Infarto do Miocárdio/fisiopatologia , Infarto do Miocárdio/cirurgia , Regeneração , Tomografia Computadorizada por Raios X , Animais , Feminino , Coração/diagnóstico por imagem , Contração Miocárdica , Miocárdio/patologia , Miócitos Cardíacos/patologia , Suínos , Fatores de Tempo , Tomografia Computadorizada por Raios X/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...