Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 298(7): 102083, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35636514

RESUMO

The ubiquitin-proteasome system fulfills an essential role in regulating protein homeostasis by spatially and temporally controlling proteolysis in an ATP- and ubiquitin-dependent manner. However, the localization of proteasomes is highly variable under diverse cellular conditions. In yeast, newly synthesized proteasomes are primarily localized to the nucleus during cell proliferation. Yeast proteasomes are transported into the nucleus through the nuclear pore either as immature subcomplexes or as mature enzymes via adapter proteins Sts1 and Blm10, while in mammalian cells, postmitotic uptake of proteasomes into the nucleus is mediated by AKIRIN2, an adapter protein essentially required for nuclear protein degradation. Stressful growth conditions and the reversible halt of proliferation, that is quiescence, are associated with a decline in ATP and the reorganization of proteasome localization. Cellular stress leads to proteasome accumulation in membraneless granules either in the nucleus or in the cytoplasm. In quiescence, yeast proteasomes are sequestered in an ubiquitin-dependent manner into motile and reversible proteasome storage granules in the cytoplasm. In cancer cells, upon amino acid deprivation, heat shock, osmotic stress, oxidative stress, or the inhibition of either proteasome activity or nuclear export, reversible proteasome foci containing polyubiquitinated substrates are formed by liquid-liquid phase separation in the nucleus. In this review, we summarize recent literature revealing new links between nuclear transport, ubiquitin signaling, and the intracellular organization of proteasomes during cellular stress conditions.


Assuntos
Complexo de Endopeptidases do Proteassoma , Saccharomyces cerevisiae , Transporte Ativo do Núcleo Celular , Trifosfato de Adenosina/metabolismo , Animais , Citoplasma/metabolismo , Mamíferos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo
3.
Front Mol Biosci ; 6: 34, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31157235

RESUMO

Proteasomes are key proteases in regulating protein homeostasis. Their holo-enzymes are composed of 40 different subunits which are arranged in a proteolytic core (CP) flanked by one to two regulatory particles (RP). Proteasomal proteolysis is essential for the degradation of proteins which control time-sensitive processes like cell cycle progression and stress response. In dividing yeast and human cells, proteasomes are primarily nuclear suggesting that proteasomal proteolysis is mainly required in the nucleus during cell proliferation. In yeast, which have a closed mitosis, proteasomes are imported into the nucleus as immature precursors via the classical import pathway. During quiescence, the reversible absence of proliferation induced by nutrient depletion or growth factor deprivation, proteasomes move from the nucleus into the cytoplasm. In the cytoplasm of quiescent yeast, proteasomes are dissociated into CP and RP and stored in membrane-less cytoplasmic foci, named proteasome storage granules (PSGs). With the resumption of growth, PSGs clear and mature proteasomes are transported into the nucleus by Blm10, a conserved 240 kDa protein and proteasome-intrinsic import receptor. How proteasomes are exported from the nucleus into the cytoplasm is unknown.

4.
Curr Genet ; 64(1): 137-140, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28835998

RESUMO

Profound knowledge is available for the structure, function and regulation of proteasomes, the key proteases for ubiquitin-dependent protein degradation in dividing cells. Far less understood are proteasome structure and function in quiescence, the resting phase of our body's cells, as in yeast cells grown to stationary phase. In quiescent yeast proteasomes exit the nucleus and accumulate in cytoplasmic protein droplets, called proteasome storage granules (PSG). PSG-like structures also exist in non-dividing mammalian cells suggesting that the mechanism underlying PSG organization is conserved from yeast to human. The PSG has physiological significance as it protects yeast cells against stress and confers fitness during aging. The molecular architecture of PSG remains an enigma, since PSG freely move as spherical units without being surrounded by membranes through the cytoplasm. They rapidly resolve with the resumption of cell proliferation and proteasomes reenter the nucleus. Our systems biology and biochemical data revealed that PSG are mainly composed of proteasomes and free ubiquitin. Often intrinsically disordered proteins undergo liquid phase separations, allowing soluble proteins to condense into protein droplets in an aqueous solution. The question is which proteins and factors nucleate PSG formation, since proteasomes composed of folded subunits are able to degrade intrinsically disordered proteins.


Assuntos
Grânulos Citoplasmáticos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ciclo Celular , Modelos Biológicos , Proteólise , Ubiquitina/metabolismo , Leveduras/metabolismo
5.
Mol Biol Cell ; 28(19): 2479-2491, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28768827

RESUMO

Proteasomes are essential for protein degradation in proliferating cells. Little is known about proteasome functions in quiescent cells. In nondividing yeast, a eukaryotic model of quiescence, proteasomes are depleted from the nucleus and accumulate in motile cytosolic granules termed proteasome storage granules (PSGs). PSGs enhance resistance to genotoxic stress and confer fitness during aging. Upon exit from quiescence PSGs dissolve, and proteasomes are rapidly delivered into the nucleus. To identify key players in PSG organization, we performed high-throughput imaging of green fluorescent protein (GFP)-labeled proteasomes in the yeast null-mutant collection. Mutants with reduced levels of ubiquitin are impaired in PSG formation. Colocalization studies of PSGs with proteins of the yeast GFP collection, mass spectrometry, and direct stochastic optical reconstitution microscopy of cross-linked PSGs revealed that PSGs are densely packed with proteasomes and contain ubiquitin but no polyubiquitin chains. Our results provide insight into proteasome dynamics between proliferating and quiescent yeast in response to cellular requirements for ubiquitin-dependent degradation.


Assuntos
Complexo de Endopeptidases do Proteassoma/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Núcleo Celular/metabolismo , Proliferação de Células/fisiologia , Citoplasma/metabolismo , Grânulos Citoplasmáticos/metabolismo , Citosol/metabolismo , Proteólise , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Front Mol Biosci ; 4: 42, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28676851

RESUMO

Proteolytic machineries containing multisubunit protease complexes and AAA-ATPases play a key role in protein quality control and the regulation of protein homeostasis. In these protein degradation machineries, the proteolytically active sites are formed by either threonines or serines which are buried inside interior cavities of cylinder-shaped complexes. In eukaryotic cells, the proteasome is the most prominent protease complex harboring AAA-ATPases. To degrade protein substrates, the gates of the axial entry ports of the protease need to be open. Gate opening is accomplished by AAA-ATPases, which form a hexameric ring flanking the entry ports of the protease. Protein substrates with unstructured domains can loop into the entry ports without the assistance of AAA-ATPases. However, folded proteins require the action of AAA-ATPases to unveil an unstructured terminus or domain. Cycles of ATP binding/hydrolysis fuel the unfolding of protein substrates which are gripped by loops lining up the central pore of the AAA-ATPase ring. The AAA-ATPases pull on the unfolded polypeptide chain for translocation into the proteolytic cavity of the protease. Conformational changes within the AAA-ATPase ring and the adjacent protease chamber create a peristaltic movement for substrate degradation. The review focuses on new technologies toward the understanding of the function and structure of AAA-ATPases to achieve substrate recognition, unfolding and translocation into proteasomes in yeast and mammalian cells and into proteasome-equivalent proteases in bacteria and archaea.

7.
Front Mol Biosci ; 4: 33, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28611990

RESUMO

Protein complexes of the Type II AAA+ (ATPases associated with diverse cellular activities) family are typically hexamers of 80-150 kDa protomers that harbor two AAA+ ATPase domains. They form double ring assemblies flanked by associated domains, which can be N-terminal, intercalated or C-terminal to the ATPase domains. Most prominent members of this family include NSF (N-ethyl-maleimide sensitive factor), p97/VCP (valosin-containing protein), the Pex1/Pex6 complex and Hsp104 in eukaryotes and ClpB in bacteria. Tremendous efforts have been undertaken to understand the conformational dynamics of protein remodeling type II AAA+ complexes. A uniform mode of action has not been derived from these works. This review focuses on p97/VCP and the Pex1/6 complex, which both structurally remodel ubiquitinated substrate proteins. P97/VCP plays a role in many processes, including ER- associated protein degradation, and the Pex1/Pex6 complex dislocates and recycles the transport receptor Pex5 from the peroxisomal membrane during peroxisomal protein import. We give an introduction into existing knowledge about the biochemical and cellular activities of the complexes before discussing structural information. We particularly emphasize recent electron microscopy structures of the two AAA+ complexes and summarize their structural differences.

8.
Crit Rev Biochem Mol Biol ; 51(6): 497-512, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27677933

RESUMO

The ubiquitin-proteasome system (UPS) plays a critical role in cellular protein homeostasis and is required for the turnover of short-lived and unwanted proteins, which are targeted by poly-ubiquitination for degradation. Proteasome is the key protease of UPS and consists of multiple subunits, which are organized into a catalytic core particle (CP) and a regulatory particle (RP). In Saccharomyces cerevisiae, proteasome holo-enzymes are engaged in degrading poly-ubiquitinated substrates and are mostly localized in the nucleus during cell proliferation. While in quiescence, the RP and CP are sequestered into motile and reversible storage granules in the cytoplasm, called proteasome storage granules (PSGs). The reversible nature of PSGs allows the proteasomes to be transported back into the nucleus upon exit from quiescence. Nuclear import of RP and CP through nuclear pores occurs via the canonical pathway that includes the importin-αß heterodimer and takes advantage of the Ran-GTP gradient across the nuclear membrane. Dependent on the growth stage, either inactive precursor complexes or mature holo-enzymes are imported into the nucleus. The present review discusses the dynamics of proteasomes including their assembly, nucleo-cytoplasmic transport during proliferation and the sequestration of proteasomes into PSGs during quiescence. [Formula: see text].


Assuntos
Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Animais , Humanos , Modelos Moleculares , Complexo de Endopeptidases do Proteassoma/análise , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/análise , Ubiquitina/análise , Ubiquitinação
9.
Cells ; 4(3): 387-405, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26262643

RESUMO

Proteasomes are highly conserved protease complexes responsible for the degradation of aberrant and short-lived proteins. In highly proliferating yeast and mammalian cells, proteasomes are predominantly nuclear. During quiescence and cell cycle arrest, proteasomes accumulate in granules in close proximity to the nuclear envelope/ER. With prolonged quiescence in yeast, these proteasome granules pinch off as membraneless organelles, and migrate as stable entities through the cytoplasm. Upon exit from quiescence, the proteasome granules clear and the proteasomes are rapidly transported into the nucleus, a process reflecting the dynamic nature of these multisubunit complexes. Due to the scarcity of studies on the nuclear transport of mammalian proteasomes, we summarised the current knowledge on the nuclear import of yeast proteasomes. This pathway uses canonical nuclear localisation signals within proteasomal subunits and Srp1/Kap95, and the canonical import receptor, named importin/karyopherin αß. Blm10, a conserved 240 kDa protein, which is structurally related to Kap95, provides an alternative import pathway. Two models exist upon which either inactive precursor complexes or active holo-enzymes serve as the import cargo. Here, we reconcile both models and suggest that the import of inactive precursor complexes predominates in dividing cells, while the import of mature enzymes mainly occurs upon exit from quiescence.

10.
F1000Res ; 4: 367, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26339477

RESUMO

The ubiquitin-proteasome system is the major degradation pathway for short-lived proteins in eukaryotic cells. Targets of the ubiquitin-proteasome-system are proteins regulating a broad range of cellular processes including cell cycle progression, gene expression, the quality control of proteostasis and the response to geno- and proteotoxic stress. Prior to degradation, the proteasomal substrate is marked with a poly-ubiquitin chain. The key protease of the ubiquitin system is the proteasome. In dividing cells, proteasomes exist as holo-enzymes composed of regulatory and core particles. The regulatory complex confers ubiquitin-recognition and ATP dependence on proteasomal protein degradation. The catalytic sites are located in the proteasome core particle. Proteasome holo-enzymes are predominantly nuclear suggesting a major requirement for proteasomal proteolysis in the nucleus. In cell cycle arrested mammalian or quiescent yeast cells, proteasomes deplete from the nucleus and accumulate in granules at the nuclear envelope (NE) / endoplasmic reticulum ( ER) membranes. In prolonged quiescence, proteasome granules drop off the nuclear envelopeNE / ER membranes and migrate as droplet-like entitiesstable organelles  throughout the cytoplasm, as thoroughly investigated in yeast. When quiescence yeast cells are allowed to resume growth, proteasome granules clear and proteasomes are rapidly imported into the nucleus. Here, we summarize our knowledge about the enigmatic structure of proteasome storage granules and the trafficking of proteasomes and their substrates between the cyto- and nucleoplasm. Most of our current knowledge is based on studies in yeast. Their translation to mammalian cells promises to provide keen insight into protein degradation in non-dividing cells, which comprise the majority of our body's cells.

11.
Biomolecules ; 4(4): 940-55, 2014 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-25333764

RESUMO

Proteasomes are conserved protease complexes enriched in the nuclei of dividing yeast cells, a major site for protein degradation. If yeast cells do not proliferate and transit to quiescence, metabolic changes result in the dissociation of proteasomes into proteolytic core and regulatory complexes and their sequestration into motile cytosolic proteasome storage granuli. These granuli rapidly clear with the resumption of growth, releasing the stored proteasomes, which relocalize back to the nucleus to promote cell cycle progression. Here, I report on three models of how proteasomes are transported from the cytoplasm into the nucleus of yeast cells. The first model applies for dividing yeast and is based on the canonical pathway using classical nuclear localization sequences of proteasomal subcomplexes and the classical import receptor importin/karyopherin αß. The second model applies for quiescent yeast cells, which resume growth and use Blm10, a HEAT-like repeat protein structurally related to karyopherin ß, for nuclear import of proteasome core particles. In the third model, the fully-assembled proteasome is imported into the nucleus. Our still marginal knowledge about proteasome dynamics will inspire the discussion on how protein degradation by proteasomes may be regulated in different cellular compartments of dividing and quiescent eukaryotic cells.


Assuntos
Transporte Ativo do Núcleo Celular , Proteínas Fúngicas/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Leveduras/citologia , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Proteólise , Leveduras/metabolismo , beta Carioferinas/metabolismo
12.
Eur J Immunol ; 44(12): 3508-21, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25231383

RESUMO

Immunoproteasomes are considered to be optimised to process Ags and to alter the peptide repertoire by generating a qualitatively different set of MHC class I epitopes. Whether the immunoproteasome at the biochemical level, influence the quality rather than the quantity of the immuno-genic peptide pool is still unclear. Here, we quantified the cleavage-site usage by human standard- and immunoproteasomes, and proteasomes from immuno-subunit-deficient mice, as well as the peptides generated from model polypeptides. We show in this study that the different proteasome isoforms can exert significant quantitative differences in the cleavage-site usage and MHC class I restricted epitope production. However, independent of the proteasome isoform and substrates studied, no evidence was obtained for the abolishment of the specific cleavage-site usage, or for differences in the quality of the peptides generated. Thus, we conclude that the observed differences in MHC class I restricted Ag presentation between standard- and immunoproteasomes are due to quantitative differences in the proteasome-generated antigenic peptides.


Assuntos
Apresentação de Antígeno/fisiologia , Antígenos de Histocompatibilidade Classe I/imunologia , Peptídeos/imunologia , Complexo de Endopeptidases do Proteassoma/imunologia , Proteólise , Animais , Linhagem Celular Transformada , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Isoenzimas/genética , Isoenzimas/imunologia , Camundongos , Camundongos Mutantes , Peptídeos/genética , Complexo de Endopeptidases do Proteassoma/genética , Especificidade por Substrato/genética , Especificidade por Substrato/imunologia
13.
Cell Mol Life Sci ; 71(24): 4729-45, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25107634

RESUMO

In eukaryotic cells, proteasomes are highly conserved protease complexes and eliminate unwanted proteins which are marked by poly-ubiquitin chains for degradation. The 26S proteasome consists of the proteolytic core particle, the 20S proteasome, and the 19S regulatory particle, which are composed of 14 and 19 different subunits, respectively. Proteasomes are the second-most abundant protein complexes and are continuously assembled from inactive precursor complexes in proliferating cells. The modular concept of proteasome assembly was recognized in prokaryotic ancestors and applies to eukaryotic successors. The efficiency and fidelity of eukaryotic proteasome assembly is achieved by several proteasome-dedicated chaperones that initiate subunit incorporation and control the quality of proteasome assemblies by transiently interacting with proteasome precursors. It is important to understand the mechanism of proteasome assembly as the proteasome has key functions in the turnover of short-lived proteins regulating diverse biological processes.


Assuntos
Modelos Biológicos , Modelos Moleculares , Complexo de Endopeptidases do Proteassoma/química , Conformação Proteica , Animais , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo
14.
Biochim Biophys Acta ; 1843(1): 39-46, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23545412

RESUMO

Proteasomes are highly conserved multisubunit protease complexes and occur in the cyto- and nucleoplasm of eukaryotic cells. In dividing cells proteasomes exist as holoenzymes and primarily localize in the nucleus. During quiescence they dissociate into proteolytic core and regulatory complexes and are sequestered into motile cytosolic clusters. Proteasome clusters rapidly clear upon the exit from quiescence, where proteasome core and regulatory complexes reassemble and localize to the nucleus again. The mechanisms underlying proteasome transport and assembly are not yet understood. Here, I summarize our present knowledge about nuclear transport and assembly of proteasomes in yeast and project our studies in this eukaryotic model organism to the mammalian cell system. This article is part of a Special Issue entitled: Ubiquitin-Proteasome System. Guest Editors: Thomas Sommer and Dieter H. Wolf.


Assuntos
Complexo de Endopeptidases do Proteassoma/metabolismo , Transporte Ativo do Núcleo Celular/genética , Animais , Divisão Celular/fisiologia , Núcleo Celular/metabolismo , Variação Genética/fisiologia , Humanos , Cinética , Modelos Moleculares , Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/genética
15.
EMBO J ; 32(20): 2697-707, 2013 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-23982732

RESUMO

Short-lived proteins are degraded by proteasome complexes, which contain a proteolytic core particle (CP) but differ in the number of regulatory particles (RPs) and activators. A recently described member of conserved proteasome activators is Blm10. Blm10 contains 32 HEAT-like modules and is structurally related to the nuclear import receptor importin/karyopherin ß. In proliferating yeast, RP-CP assemblies are primarily nuclear and promote cell division. During quiescence, RP-CP assemblies dissociate and CP and RP are sequestered into motile cytosolic proteasome storage granuli (PSG). Here, we show that CP sequestration into PSG depends on Blm10, whereas RP sequestration into PSG is independent of Blm10. PSG rapidly clear upon the resumption of cell proliferation and proteasomes are relocated into the nucleus. Thereby, Blm10 facilitates nuclear import of CP. Blm10-bound CP serves as an import receptor-cargo complex, as Blm10 mediates the interaction with FG-rich nucleoporins and is dissociated from the CP by Ran-GTP. Thus, Blm10 represents the first CP-dedicated nuclear import receptor in yeast.


Assuntos
Núcleo Celular/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Transporte Ativo do Núcleo Celular/genética , Animais , Proliferação de Células , Grânulos Citoplasmáticos/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Modelos Biológicos , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Organismos Geneticamente Modificados , Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/fisiologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Xenopus
16.
Mol Cell Proteomics ; 11(10): 1008-23, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22822185

RESUMO

Proteasome-catalyzed peptide splicing (PCPS) represents an additional activity of mammalian 20S proteasomes recently identified in connection with antigen presentation. We show here that PCPS is not restricted to mammalians but that it is also a feature of yeast 20S proteasomes catalyzed by all three active site ß subunits. No major differences in splicing efficiency exist between human 20S standard- and immuno-proteasome or yeast 20S proteasome. Using H(2)(18)O to monitor the splicing reaction we also demonstrate that PCPS occurs via direct transpeptidation that slightly favors the generation of peptides spliced in cis over peptides spliced in trans. Splicing efficiency itself is shown to be controlled by proteasomal cleavage site preference as well as by the sequence characteristics of the spliced peptides. By use of kinetic data and quantitative analyses of PCPS obtained by mass spectrometry we developed a structural model with two PCPS binding sites in the neighborhood of the active Thr1.


Assuntos
Linfócitos B/metabolismo , Peptídeos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Processamento de Proteína , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Linfócitos B/citologia , Biocatálise , Linhagem Celular Transformada , Cromatografia Líquida , Humanos , Dados de Sequência Molecular , Peptídeos/síntese química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
17.
Methods Mol Biol ; 832: 339-48, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22350896

RESUMO

Native polyacrylamide gel electrophoresis (PAGE) is an invaluable technique in biochemistry to characterize native protein complexes with high molecular mass. Thus, native PAGE is suited to resolve proteasomes, giant proteases responsible for the degradation of polyubiquitylated proteins. Proteasomes contain multiple subunits and exist in different configurations. All configurations have a common 20S core particle (CP). The CP encloses the proteolytic chamber and is composed of four stacked rings with C2 symmetry. The entrance to the CP is gated by central pores within the outer rings, which also provide the binding sites for the 19S regulatory complex (RP). Adjacent regulatory proteins, such as Blm10/PA200, are bound to specific proteasome species of low abundance and contribute to the heterogeneity of proteasome complexes. To get insight into the complexity of proteasome configurations in yeast, we developed a native PAGE system by which GFP-labelled variants of proteasomal subunits are visualized by phosphofluoroimaging. Following native PAGE, proteasome species can be subjected to in-gel activity assays, subsequent SDS-PAGE, and Western blotting.


Assuntos
Eletroforese em Gel de Poliacrilamida/métodos , Complexo de Endopeptidases do Proteassoma/análise , Complexo de Endopeptidases do Proteassoma/química , Proteínas de Saccharomyces cerevisiae/análise , Proteínas de Saccharomyces cerevisiae/química , Western Blotting/métodos , Proteínas de Fluorescência Verde/metabolismo , Poliubiquitina/análise , Poliubiquitina/química , Saccharomyces cerevisiae/metabolismo
18.
Mol Cell ; 38(6): 879-88, 2010 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-20620957

RESUMO

The proteasome, the central protease of eukaryotic cells, is composed of one core particle (CP) and one or two adjacent regulatory particles (RP), which contain multiple subunits. Several proteasome-dedicated chaperones govern the assembly of CP and RP, respectively. We sought for proteins that regulate final steps of RP-CP assembly in yeast and found Ecm29, a conserved HEAT-like repeat protein. Here, we show that Ecm29 controls the integrity of RP-CP assemblies. Ecm29 recognizes RP-CP species in which CP maturation is stalled due to the lack of distinct beta subunits. Reconstitution assays revealed that Ecm29 functions as scaffold protein during the remodeling of incompletely matured RP-CP assemblies into regular enzymes. Upon the completion of CP maturation, Ecm29 is degraded and RP-CP is dissociated.


Assuntos
Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/enzimologia , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/fisiologia , Subunidades Proteicas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
19.
Nat Struct Mol Biol ; 16(2): 219-25, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19169257

RESUMO

The 26S proteasome degrades polyubiquitylated (polyUb) proteins by an ATP-dependent mechanism. Here we show that binding of model polyUb substrates to the 19S regulator of mammalian and yeast 26S proteasomes enhances the peptidase activities of the 20S proteasome about two-fold in a process requiring ATP hydrolysis. Monoubiquitylated proteins or tetraubiquitin alone exert no effect. However, 26S proteasomes from the yeast alpha3DeltaN open-gate mutant and the rpt2YA and rpt5YA mutants with impaired gating can still be activated (approximately 1.3-fold to 1.8-fold) by polyUb-protein binding. Thus, binding of polyUb substrates to the 19S regulator stabilizes gate opening of the 20S proteasome and induces conformational changes of the 20S proteasome that facilitate channeling of substrates and their access to active sites. In consequence, polyUb substrates will allosterically stimulate their own degradation.


Assuntos
Poliubiquitina/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Cristalografia por Raios X , Humanos , Mucina-1/metabolismo , Saccharomyces cerevisiae/metabolismo
20.
EMBO Rep ; 9(12): 1237-43, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18927584

RESUMO

Blm10 is bound to the yeast proteasome core particle, a crucial protease of eukaryotic cells [corrected]. Two gates, at both ends of the CP, control the access of protein substrates to the catalytic cavity of the CP. Normally, substrate access is auto-inhibited by a closed gate conformation unless regulatory complexes are bound to the CP and translocate protein substrates in an ATP-dependent manner. Here, we provide evidence that Blm10 recognizes pre-activated open gate CPs, which are assumed to exist in an equilibrium with inactive closed gate CP. Consequently, single-capped Blm10-CP shows peptide hydrolysis activity. Under conditions of disturbed CP assembly, as well as in open gate mutants, pre-activated CP or constitutively active CP, respectively, prevail. Then, Blm10 sequesters disordered and open gate CP by forming double-capped Blm10(2)-CP in which peptide hydrolysis activity is repressed. We conclude that Blm10 distinguishes between gate conformations and regulates the activation of CP.


Assuntos
Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Ativação Enzimática , Estabilidade Enzimática , Modelos Biológicos , Chaperonas Moleculares/metabolismo , Mutação/genética , Ligação Proteica , Conformação Proteica , Saccharomyces cerevisiae/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...