Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 893: 164869, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37329917

RESUMO

The use of recycled plastic in asphalt is raising interest since contributing to increase the sustainability of roads pavements. The engineering performance of such roads are commonly assessed but scarcely correlated to the environmental impacts of incorporating recycled plastic in asphalt. This research encompasses an evaluation of the mechanical behaviour and environmental impact of introducing low melting point recycled plastics, low density polyethylene and commingled polyethylene/polypropylene, to conventional hot mix asphalt. While this investigation reveals a reduction in moisture resistance between 5 and 22 % contingent on the plastic content, the benefits include a significant 150 % enhancement in fatigue resistance and 85 % improvement in rutting resistance when compared with conventional hot mix asphalt (HMA). From an environmental perspective, high-temperature asphalt production with higher plastic content resulted in decreased gaseous emissions for both types of recycled plastics up to 21 %. Further comparison studies indicate that microplastic generation from recycled plastic-modified asphalt is comparable to that from commercial polymer-modified asphalt products, long employed by the industry. Overall, the use of low melting point recycled plastics as an asphalt modifier is promising since offering both engineering and environmental benefits when compared to conventional asphalt.

2.
Chemosphere ; 315: 137757, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36610511

RESUMO

The contamination of the environment by microplastics (MPs) in road dust poses a serious ecological and health concern. MPs have been detected in road dust worldwide and their presence has been mainly attributed to plastic litter fragmentation and vehicle tyre abrasion. Although current technologies such as Raman and Fourier Transform InfraRed spectroscopy as well as Scanning Electron Microscopy are capable of detecting MPs in road dust, the analysis of MPs shape and MPs smaller than 20 µm is limited and often labour demanding. More accurate, cost-effective and rapid techniques have now become necessary to analyse MPs in road dust, particularly since the development of large infrastructure projects that incorporate recycled plastic into road assets and roadside furniture. Nile red (NR) staining is a promising technique to identify MPs in environmental samples; however, it has not yet been applied to road dust. This study investigates the use of NR fluorescence microscopy to detect MPs in road dust and provides information about MP amount, shape and size distribution. The staining duration and temperature, solvent selection and NR concentration were optimised considering 33 different road dust materials, including 13 types of plastic. The NR staining procedure developed in this work is capable of successfully differentiating between MPs down to 1 µm and other non-plastic road dust materials. Future applications include assessing the contribution of plastic-modified roads to MP pollution, comparing the level of MP pollution in urban and rural areas and providing a rapid, simple, inexpensive and reliable monitoring approach for further studies to compare MP using a singular optimised methodology.


Assuntos
Poeira , Poluentes Químicos da Água , Poeira/análise , Monitoramento Ambiental/métodos , Microplásticos/análise , Plásticos , Poluição Ambiental/análise , Poluentes Químicos da Água/análise
3.
Chemosphere ; 310: 136891, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36257385

RESUMO

Wastewater treatment plants (WWTPs) are key components for the capture of microplastics (MPs) before they are released into natural waterways. Removal efficiencies as high as 99% may be achieved but sub-micron MPs as well as nanoplastics have been overlooked because of analytical limitations. Furthermore, short MP fibres are of concern because of their low capture rate as well as the lack of understanding of their influence on purification system efficiency. This study has investigated the impact of poly(ethylene terephthalate) (PET) short nanofibres on the performance of polyvinylidene fluoride (PVDF) ultrafiltration membranes during cross-flow operation. Model MP fibres with an average length of 10 ± 7 µm and a diameter of 142 ± 40 nm were prepared via a combination of electrospinning and fine cutting using a cryomicrotome. The manufactured MPs were added to both pure and synthetic domestic wastewater at a concentration of 1 mg.L-1 to determine their impact on the performance of PVDF ultrafiltration membranes. The results show that PET fibres attach to the membrane in a disorganised manner with low pore coverage. The water flux was decreased by 8% for MPs in pure water and no noticeable effect in wastewater after 3 days of filtration. Additionally, the nutrient removal efficiency of the membrane was not altered by the presence of PET MPs. These findings show that MP fibres do not significantly influence the early stages of filtration for a standard concentration of MPs in wastewater treatment plant studies.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Microplásticos , Plásticos , Águas Residuárias , Ultrafiltração , Poluentes Químicos da Água/análise , Água
4.
Sci Total Environ ; 858(Pt 2): 159910, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36336045

RESUMO

The incorporation of recycled plastics in asphalt mixtures is getting a growing interest, however, exposing recycled plastics to the high working temperatures of asphalt has posed health and safety concerns. Few studies have paid attention to assessing health and environmental risks concerning recycled plastic-modified asphalt. This study investigates the release of 6 carcinogenic compounds from asphalt modified with recycled plastics, 4 volatile organic compounds (VOCs) and 2 polycyclic aromatic hydrocarbons (PAHs). The concentration of each compound was quantified by GC-MS. Human health risk assessments were conducted using probabilistic methods to assess the risk for an average Australian construction worker to get non-carcinogenic and carcinogenic health issues when exposed to conventional and plastic-modified asphalt fumes. Results showed that non-carcinogenic and carcinogenic risks related to VOC carcinogens (benzene, trichloroethylene, tetrachloroethylene and styrene) are negligible while PAHs (benzo[a]pyrene and dibenz[a,h]anthracene) constitute a possible non-carcinogenic risk and low carcinogenic risk for workers exposed to asphalt fumes. Overall the incorporation of recycled plastic in asphalt reduced the risk for workers to get non-carcinogenic and carcinogenic health issues compared to conventional asphalt mixes. ENVIRONMENTAL IMPLICATION: With increasing trends of using recycled plastics as road materials, concerns about the exposure of workers to carcinogenic gaseous emissions have been raised. This study demonstrates a non-carcinogenic and carcinogenic risk assessment on exposure to recycled plastic modified asphalt fumes. The findings suggest that recycled plastics decrease non-carcinogenic and carcinogenic risks compared to conventional asphalt.


Assuntos
Poluentes Ocupacionais do Ar , Exposição Ocupacional , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Poluentes Ocupacionais do Ar/análise , Carcinógenos/análise , Plásticos/análise , Exposição Ocupacional/análise , Austrália , Hidrocarbonetos/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Gases/análise
5.
J Hazard Mater ; 437: 129334, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35716564

RESUMO

Although plastic-modified roads are a promising approach to reducing the amount of landfilled and incinerated plastic and improving asphalt pavement performance, the contribution of plastic-modified roads to microplastic pollution is unknown. This study aimed to develop a new abrasion procedure to quantify the release of microplastics from recycled plastic-modified asphalt depending on environmental factors, the type and content of plastic used, and the incorporation method in bitumen/asphalt. A Wet Track Abrasion machine was used to simulate road traffic abrasion on a plastic-modified asphalt sample, and a novel microplastic extraction procedure was designed to extract the generated microplastics. Incorporating recycled plastic as a polymer modifier in the bitumen matrix resulted in an early release of microplastics compared to its addition as a synthetic aggregate substitute in the asphalt mix. Cold temperatures and low pH values favoured the generation of microplastics from plastic-modified asphalt. Due to the lack of universal thresholds for the release of microplastics into the environment, environmental agencies and local authorities could benefit from this novel laboratory-based microplastic assessment procedure to foster the sustainable use of recycled plastic in roads.


Assuntos
Microplásticos , Plásticos , Poluição Ambiental , Reciclagem
6.
Sci Total Environ ; 832: 155037, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35395294

RESUMO

A key aspect when investigating the use of recycled plastics in bitumen relates considerably to the issues relating to occupational, health and safety for humans and the environment from a fuming and emissions perspective. This research investigates laboratory-generated fumes in the forms of volatile organic compounds (VOCs), and polycyclic aromatic hydrocarbons (PAHs) generated from producing polymer modified bitumen using five different types of recycled plastics. A comparative analysis of recycled plastic modified bitumen fumes was conducted based on a series of optimized parameters, including working temperatures (160 °C, 180 °C and 200 °C) and polymer contents (1%, 2%, 4% and 6% by weight of bitumen) against neat bitumen and polymer-modified bitumen. Forty-eight volatile organic compounds (VOCs) and sixteen polycyclic aromatic hydrocarbons (PAHs) were quantified using gas chromatography-mass spectrometry (GC-MS). The results from the comparative analysis revealed that the incorporation of recycled plastics could reduce overall emissions from both VOCs and PAHs perspectives. The reduction in emissions can be attributed to the enhancement in thermal stability of the bitumen blend when recycled plastics are added. The reduction rate is heavily dependent on the type and source of recycled plastics used in the blending process. Furthermore, a specific compound concentration analysis of the top-four weighted compounds emitted reveals that the total concentration of emissions can be deceiving as specific compounds can spike when adding recycled plastics in bitumen despite a reduction trend for the overall concentration.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Compostos Orgânicos Voláteis , Gases , Humanos , Hidrocarbonetos/análise , Plásticos/química , Hidrocarbonetos Policíclicos Aromáticos/análise
7.
Sci Total Environ ; 829: 154604, 2022 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-35307423

RESUMO

This study investigated the suitability of 31 recycled waste plastic samples obtained from 15 major recycling companies across Australia and New Zealand to be used as bitumen/asphalt modifiers. The plastics have been selected to be representative of recycled waste plastic around Australia and New Zealand. The recycled waste plastics belonged to either the post-industrial or post-consumer collection scheme. A new classification scheme was developed to rank each recycled waste plastic based on their chemical and physical properties against those of bitumen/asphalt. Specifically, density, polarity, melting point, solubility and melt flow index of the samples as well as the presence of contaminants, fillers and additives were analyzed for each recycled waste plastic material and their virgin counterpart. These 8 properties were used to rank various sources of recycled low-density poly(ethylene), linear low-density poly(ethylene), high density poly(ethylene) and poly(propylene) in addition to commingled plastics based on their suitability for bitumen modification (wet method). The modification of asphalt via replacement of virgin quarry aggregate with plastic aggregate (dry method) by recycled acrylonitrile butadiene styrene and poly(ethylene terephthalate) was also assessed by considering four criteria of purity, polarity, recycling contamination and hazardous additives. This new multi-criterion ranking approach revealed that low-density and linear low-density poly(ethylene) and acrylonitrile butadiene styrene and poly(ethylene terephthalate) should be preferentially used as bitumen/asphalt modifiers. This tool has been developed for recycling companies and bitumen/asphalt contractors to determine the suitability of recycled waste plastics within asphalt roads by a series of experimental techniques.


Assuntos
Acrilonitrila , Plásticos , Butadienos , Etilenos , Hidrocarbonetos , Polietileno , Polietilenotereftalatos , Reciclagem , Estirenos , Resíduos
8.
Sci Total Environ ; 788: 147689, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34022574

RESUMO

Membrane fouling by nano/microplastics (NP/MPs) is an emerging concern threatening the performance of water and wastewater treatment facilities. The NP/MPs can lead to surface adsorption, fouling and potential mechanical abrasion of the membranes. In this work, periodic gas scouring was applied during the filtration of nano/microplastics across ultrafiltration membranes to investigate the impact of shear forces on the adsorption of nano/microplastics. A series of surface energy and chemistry-modified membranes were also used including acrylic acid, cyclopropylamine and hexamethyldisiloxane plasma-modified membranes, allowing for a set of materials with controlled hydrophilicity, roughness and surface charge. Bubbling gas within the system at a gas flow rate of 0.5 to 1 L·min-1 and a water flow rate of 2 L·min-1 was found to limit the water flux decline across the pristine and hydrophobic membranes compared to the filtration experiments performed without cleaning from 38 to 22 and 23%, respectively. The adsorption of nano/microplastics onto the surface of the membranes was also simultaneously decreased from 40 to 25 and 19%, respectively. Interestingly, for the hydrophilised membranes no enhancement in permeance was observed when performing gas scouring due to the already low tendency for selective adsorption of the nano/microplastics onto their surface. The correlation of a dimensionless fouling number to the shear stress number suggested that the shear forces induced by gas scouring reduced nano/microplastics adsorption up to a gas injection ratio (volume fraction of gas) of 0.3, where the wall shear stress at the surface of the membrane was limited. This work offers an advanced physical strategy to reduce and control membrane fouling by nano/microplastics, with potential for this strategy to be adapted for more complex water matrices and plastic particles.

9.
J Hazard Mater ; 384: 121393, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31740306

RESUMO

The presence of nanoplastics in water has become a major environmental concern in the last decade however the knowledge on the origin and formation of these emerging contaminants is lacking due to analytical challenges in detection and quantification techniques. The release of nanoplastics due to the fragmentation of microplastics extracted from a facial scrub and the resulting toxicity on aquatic species are reported here for the first time. The daily use of 4 g of facial scrub could release up to 1011 microplastics of 400 nm in size per litre of wastewater from household drains. Turbulences created by mixing or pumping induced the fragmentation of microplastics into nanoplastics smaller than 10 nm via a crack propagation and failure mechanism, increasing the number of particles in water by one order of magnitude. Compared to microplastics at a fixed concentration number of 6.8 × 108 part./mL, the generated nanoplastics initiated the death of 54% more cells in zebrafish by passive ingestion via skin diffusion which therefore pose a real threat for aquatic living organisms. These results stress the need to reduce the release of nano/microplastics in the aquatic environment to prevent the contamination of all trophic levels.

10.
Water Res ; 161: 621-638, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31254888

RESUMO

The presence of nano and microplastics in water has increasingly become a major environmental challenge. A key challenge in their detection resides in the relatively inadequate analytical techniques available preventing deep understanding of the fate of nano/microplastics in water. The occurrence of nano/microplastics in water and wastewater treatment plants poses a concern for the quality of the treated water. Due to their broad but small size and diverse chemical natures, nano/microplastics may travel easily along water and wastewater treatment processes infiltrating remediation processes at various levels, representing operational and process stability challenges. This review aims at presenting the current understanding of the fate and impact of nano/microplastics through water and wastewater treatment plants. The formation and fragmentation mechanisms, physical-chemical properties and occurrence of nano/microplastics in water are correlated to the interactions of nano/microplastics with water and wastewater treatment plant processes and potential solutions to limit these interactions are comprehensively reviewed. This critical analysis offers new strategies to limit the number of nano/microplastics in water and wastewater to keep water quality up to the required standards and reduce threats on our ecosystems.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Ecossistema , Monitoramento Ambiental , Plásticos , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...