Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 7(1): 5899, 2017 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28724969

RESUMO

Three-dimensional tissue-structural relationships are not well captured by typical thin-section histology, posing challenges for the study of tissue physiology and pathology. Moreover, while recent progress has been made with intact methods for clearing, labeling, and imaging whole organs such as the mature brain, these approaches are generally unsuitable for soft, irregular, and heterogeneous tissues that account for the vast majority of clinical samples and biopsies. Here we develop a biphasic hydrogel methodology, which along with automated analysis, provides for high-throughput quantitative volumetric interrogation of spatially-irregular and friable tissue structures. We validate and apply this approach in the examination of a variety of developing and diseased tissues, with specific focus on the dynamics of normal and pathological pancreatic innervation and development, including in clinical samples. Quantitative advantages of the intact-tissue approach were demonstrated compared to conventional thin-section histology, pointing to broad applications in both research and clinical settings.


Assuntos
Doença , Imageamento Tridimensional/métodos , Organogênese , Animais , Feminino , Humanos , Hidrogéis/química , Camundongos Endogâmicos C57BL , Crista Neural/citologia , Sistemas Neurossecretores/citologia , Pâncreas/citologia
2.
Ophthalmic Res ; 48(1): 50-5, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22398578

RESUMO

AIMS: To determine the rate of diffusion of myoglobin and bovine serum albumin (BSA) through the human cornea. These small proteins have hydrodynamic diameters of approximately 4.4 and 7.2 nm, and molecular weights of 16.7 and 66 kDa, for myoglobin and BSA, respectively. METHODS: Diffusion coefficients were measured using a diffusion chamber where the protein of interest and balanced salt solution were in different chambers separated by an ex vivo human cornea. Protein concentrations in the balanced salt solution chamber were measured over time. Diffusion coefficients were calculated using equations derived from Fick's law and conservation of mass in a closed system. RESULTS: Our experiments demonstrate that the diffusion coefficient of myoglobin is 5.5 ± 0.9 × 10(-8) cm(2)/s (n = 8; SD = 1.3 × 10(-8) cm(2)/s; 95% CI: 4.6 × 10(-8) to 6.4 × 10(-8) cm(2)/s) and the diffusion coefficient of BSA is 3.1 ± 1.0 × 10(-8) cm(2)/s (n = 8; SD = 1.4 × 10(-8) cm(2)/s; 95% CI: 2.1 × 10(-8) to 4.1 × 10(-8) cm(2)/s). CONCLUSIONS: Our study suggests that molecules as large as 7.2 nm may be able to passively diffuse through the human cornea. With applications in pharmacotherapy and the development of an artificial cornea, further experiments are warranted to fully understand the limits of human corneal diffusion and its clinical relevance.


Assuntos
Córnea/metabolismo , Mioglobina/metabolismo , Soroalbumina Bovina/metabolismo , Cromatografia Líquida , Difusão , Ensaio de Imunoadsorção Enzimática , Humanos , Peso Molecular , Tamanho da Partícula , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
3.
Biomed Mater ; 6(5): 055006, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21873762

RESUMO

In this study, protein diffusion through swollen hydrogel networks prepared from end-linked poly(ethylene glycol)-diacrylate (PEG-DA) was investigated. Hydrogels were prepared via photopolymerization from PEG-DA macromonomer solutions of two molecular weights, 4600 Da and 8000 Da, with three initial solid contents: 20, 33 and 50 wt/wt% PEG. Diffusion coefficients for myoglobin traveling across the hydrogel membrane were determined for all PEG network compositions. The diffusion coefficient depended on PEG molecular weight and initial solid content, with the slowest diffusion occurring through lower molecular weight, high-solid-content networks (D(gel) = 0.16 ± 0.02 × 10(-8) cm(2) s(-1)) and the fastest diffusion occurring through higher molecular weight, low-solid-content networks (D(gel) = 11.05 ± 0.43 × 10(-8) cm(2) s(-1)). Myoglobin diffusion coefficients increased linearly with the increase of water content within the hydrogels. The permeability of three larger model proteins (horseradish peroxidase, bovine serum albumin and immunoglobulin G) through PEG(8000) hydrogel membranes was also examined, with the observation that globular molecules as large as 10.7 nm in hydrodynamic diameter can diffuse through the PEG network. Protein diffusion coefficients within the PEG hydrogels ranged from one to two orders of magnitude lower than the diffusion coefficients in free water. Network defects were determined to be a significant contributing factor to the observed protein diffusion.


Assuntos
Materiais Biocompatíveis , Sistemas de Liberação de Medicamentos , Polietilenoglicóis , Proteínas/administração & dosagem , Animais , Órgãos Artificiais , Materiais Biocompatíveis/química , Bioengenharia , Bovinos , Córnea , Difusão , Peroxidase do Rábano Silvestre/administração & dosagem , Hidrogéis/química , Imunoglobulina G/administração & dosagem , Teste de Materiais , Peso Molecular , Mioglobina/administração & dosagem , Tamanho da Partícula , Permeabilidade , Processos Fotoquímicos , Polietilenoglicóis/química , Soroalbumina Bovina/administração & dosagem
4.
Macromolecules ; 43(16): 6861-6870, 2010 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-21403767

RESUMO

Due to the biocompatibility of poly(ethylene glycol) (PEG), PEG-based hydrogels have attracted considerable interest for use as biomaterials in tissue engineering applications. In this work, we show that PEG-based hydrogels prepared by photopolymerization of PEG macromonomers functionalized with either acrylate or acrylamide end-groups generate networks with crosslink junctions of high functionality. Although the crosslink functionality is not well controlled, the resultant networks are sufficiently well ordered to generate a distinct correlation peak in the small angle x-ray scattering (SAXS) related to the distance between crosslink junctions within the PEG network. The crosslink spacing is a useful probe of the PEG chain conformation within the hydrogel and ranges from approximately 6 to 16 nm, dependent upon both the volume fraction of polymer and the molecular weight of the PEG macromonomers. The presence of a peak in the scattering of photopolymerized PEG networks is also correlated with an enhanced compressive modulus in comparison to PEG networks reported in the literature with much lower crosslink functionality that exhibit no scattering peak. This comparison demonstrates that the method used to link together PEG macromonomers has a critical impact on both the nanoscale structure and the macroscopic properties of the resultant hydrogel network.

5.
Langmuir ; 23(3): 1483-8, 2007 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-17241077

RESUMO

Agarose hydrogels of varied elastic modulus can be patterned into 100-microm-wide channels with wall heights of 60 microm. After modifying the hydrogels with chloroacetic acid (acid gels), they are amenable to modification with amine-containing ligands using EDC-NHS chemistry. Using both rheometry and atomic force microscopy (AFM) nanoindentation measurements, the elastic modulus of unmodified hydrogels increases linearly from 3.6 +/- 0.5 kPa to 45.2 +/- 5.5 kPa for 0.5 to 2.0 wt/vol % hydrogel, respectively. The elastic modulus of acid gels is 2.2 +/- 0.3 kPa to 16.2 +/- 1.6 kPa for 0.5 to 2.0 wt/vol %, respectively. No further changes were measured after further modifying the acid gels with fibronectin. Confocal images of rhodamine-modified acid gels show that the optimal filling viscosity of the agarose solutions is between 1 and 4 cP. This new method of patterning allows for the creation of substrates that take advantage of both micron-scale patterns and variably elastic hydrogels.


Assuntos
Elasticidade , Hidrogéis , Acetatos , Fibronectinas , Microscopia de Força Atômica , Rodaminas , Sefarose , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...