Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Med Biol ; 63(12): 125012, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29786611

RESUMO

The purpose of this study is to examine in a clinical setting a novel formulation of objective functions for intensity-modulated radiotherapy treatment plan multicriteria optimization (MCO) that we suggested in a recent study. The proposed objective functions are extended with dynamic multileaf collimator (DMLC) delivery constraints from the literature, and a tailored interior point method is described to efficiently solve the resulting optimization formulation. In a numerical planning study involving three patient cases, DMLC plans Pareto optimal to the MCO formulation with the proposed objective functions are generated. Evaluated based on pre-defined plan quality indices, these DMLC plans are compared to conventionally generated DMLC plans. Comparable or superior plan quality is observed. Supported by these results, the proposed objective functions are argued to have a potential to streamline the planning process, since they are designed to overcome the methodological shortcomings associated with the conventional penalty-based objective functions assumed to cause the current need for time-consuming trial-and-error parameter tuning. In particular, the increased accuracy of the planning tools imposed by the proposed objective functions has the potential to make the planning process less complicated. These conclusions position the proposed formulation as an alternative to existing methods for automated planning.


Assuntos
Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Humanos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/normas , Radioterapia de Intensidade Modulada/instrumentação , Radioterapia de Intensidade Modulada/normas
2.
Med Phys ; 44(6): 2045-2053, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28160520

RESUMO

PURPOSE: To formulate convex planning objectives of treatment plan multicriteria optimization with explicit relationships to the dose-volume histogram (DVH) statistics used in plan quality evaluation. METHODS: Conventional planning objectives are designed to minimize the violation of DVH statistics thresholds using penalty functions. Although successful in guiding the DVH curve towards these thresholds, conventional planning objectives offer limited control of the individual points on the DVH curve (doses-at-volume) used to evaluate plan quality. In this study, we abandon the usual penalty-function framework and propose planning objectives that more closely relate to DVH statistics. The proposed planning objectives are based on mean-tail-dose, resulting in convex optimization. We also demonstrate how to adapt a standard optimization method to the proposed formulation in order to obtain a substantial reduction in computational cost. RESULTS: We investigated the potential of the proposed planning objectives as tools for optimizing DVH statistics through juxtaposition with the conventional planning objectives on two patient cases. Sets of treatment plans with differently balanced planning objectives were generated using either the proposed or the conventional approach. Dominance in the sense of better distributed doses-at-volume was observed in plans optimized within the proposed framework. CONCLUSION: The initial computational study indicates that the DVH statistics are better optimized and more efficiently balanced using the proposed planning objectives than using the conventional approach.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Humanos , Dosagem Radioterapêutica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...