Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(21): 9200-9212, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38743440

RESUMO

In a boreal acidic sulfate-rich subsoil (pH 3-4) developing on sulfidic and organic-rich sediments over the past 70 years, extensive brownish-to-yellowish layers have formed on macropores. Our data reveal that these layers ("macropore surfaces") are strongly enriched in 1 M HCl-extractable reactive iron (2-7% dry weight), largely bound to schwertmannite and 2-line ferrihydrite. These reactive iron phases trap large pools of labile organic matter (OM) and HCl-extractable phosphorus, possibly derived from the cultivated layer. Within soil aggregates, the OM is of a different nature from that on the macropore surfaces but similar to that in the underlying sulfidic sediments (C-horizon). This provides evidence that the sedimentary OM in the bulk subsoil has been largely preserved without significant decomposition and/or fractionation, likely due to physiochemical stabilization by the reactive iron phases that also existed abundantly within the aggregates. These findings not only highlight the important yet underappreciated roles of iron oxyhydroxysulfates in OM/nutrient storage and distribution in acidic sulfate-rich and other similar environments but also suggest that boreal acidic sulfate-rich subsoils and other similar soil systems (existing widely on coastal plains worldwide and being increasingly formed in thawing permafrost) may act as global sinks for OM and nutrients in the short run.


Assuntos
Carbono , Sedimentos Geológicos , Ferro , Solo , Solo/química , Ferro/química , Sedimentos Geológicos/química , Nutrientes , Fósforo/química , Concentração de Íons de Hidrogênio
2.
Sci Total Environ ; 856(Pt 2): 159142, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36183767

RESUMO

Acid sulfate soils discharge large amounts of sulfuric acid along with toxic metals, deteriorating water quality and ecosystem health of recipient waterbodies. There is thus an urgent need to develop cost-effective and sustainable measures to mitigate the negative effects of these soils. In this study, we flushed aseptically-prepared MQ water (reference) or mitigation suspensions containing calcite, peat or a combination of both through 15-cm-thick soil cores from an acid sulfate soil field in western Finland, and investigated the geochemistry of Fe and S on the surfaces of macropores and in the solid columnar blocks (interiors) of the soil columns. The macropore surfaces of all soil columns were strongly enriched in total and HCl-extractable Fe and S relative to the interiors, owing to the existence of abundant Fe oxyhydroxysulfates (schwertmannite and partly jarosite) as yellow-to-brownish surface-coatings. The dissolution/hydrolysis of Fe oxyhydroxysulfates (predominantly jarosite) on the macropore surfaces of the reference columns, although being constantly flushed, effectively buffered the permeates at pH close to 4. These results suggest that Fe oxyhydroxysulfates accumulated on the macropore surfaces of boreal acid sulfate soils can act as long-lasting acidification sources. The treatments with mitigation suspensions led to a (near-)complete conversion of jarosite to Fe hydroxides, causing a substantial loss of S. In contrast, we did not observe any recognizable evidence indicating transformation of schwertmannite. However, sulfate sorbed by this mineral might be partially lost through anion-exchange processes during the treatments with calcite. No Fe sulfides were found in the peat-treated columns. Since Fe sulfides can support renewed acidification events, the moderate mineralogical changes induced by peat are desirable. In addition, peat materials can act as toxic-metal scavengers. Thus, the peat materials used here, which is relatively cheap in the boreal zone, is ideal for remediating boreal acid sulfate soils and other similar jarosite-bearing soils.


Assuntos
Ferro , Solo , Ferro/análise , Carbonato de Cálcio , Ecossistema , Sulfatos , Enxofre , Ácidos , Sulfetos
3.
Sci Total Environ ; 813: 151864, 2022 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-34822903

RESUMO

Sediments along the Baltic Sea coast can contain considerable amounts of metal sulfides that if dredged and the spoils deposited such that they are exposed to air, can release high concentrations of acid and toxic metals into recipient water bodies. Two river estuaries in western Finland were dredged from 2013 to 2018 and the dredge spoils were deposited on land previously covered with agricultural limestone to buffer the pH and mitigate acid and metal release. In this study, the geochemistry and 16S rRNA gene amplicon based bacterial communities were investigated over time to explore whether the application of lime prevented a conversion of the dredge spoils into acid producing and metal releasing soil. The pH of the dredge spoils decreased with time indicating metal sulfide oxidation and resulted in elevated sulfate concentrations along with a concomitant release of metals. However, calculations indicated only approximately 5% of the added lime had been dissolved. The bacterial communities decreased in diversity with the lowering of the pH as taxa most similar to extremely acidophilic sulfur, and in some cases iron, oxidizing Acidithiobacillus species became the dominant characterized genus in the deposited dredge spoils as the oxidation front moved deeper. In addition, other taxa characterized as involved in oxidation of iron or sulfur were identified including Gallionella, Sulfuricurvum, and Sulfurimonas. These data suggest there was a rapid conversion of the dredge spoils to severely acidic soil similar to actual acid sulfate soil and that the lime placed on the land prior to deposition of the spoils, and later ploughed into the dry dredge spoils, was insufficient to halt this process. Hence, future dredging and deposition of dredge spoils containing metal sulfides should not only take into account the amount of lime used for buffering but also its grain size and mixing into the soil.


Assuntos
Rios , Solo , Sedimentos Geológicos , RNA Ribossômico 16S , Sulfatos/análise , Sulfetos/análise
4.
Sci Data ; 6(1): 207, 2019 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-31619684

RESUMO

Natural sulfide rich deposits are common in coastal areas worldwide, including along the Baltic Sea coast. When artificial drainage exposes these deposits to atmospheric oxygen, iron sulfide minerals in the soils are rapidly oxidized. This process turns the potential acid sulfate soils into actual acid sulfate soils and mobilizes large quantities of acidity and leachable toxic metals that cause severe environmental problems. It is known that acidophilic microorganisms living in acid sulfate soils catalyze iron sulfide mineral oxidation. However, only a few studies regarding these communities have been published. In this study, we sampled the oxidized actual acid sulfate soil, the transition zone where oxidation is actively taking place, and the deepest un-oxidized potential acid sulfate soil. Nucleic acids were extracted and 16S rRNA gene amplicons, metagenomes, and metatranscriptomes generated to gain a detailed insight into the communities and their activities. The project will be of great use to microbiologists, environmental biologists, geochemists, and geologists as there is hydrological and geochemical monitoring from the site stretching back for many years.


Assuntos
Metagenoma , Minerais , RNA Ribossômico 16S/genética , Microbiologia do Solo , Sulfatos , Finlândia , Solo/química
5.
MethodsX ; 5: 136-140, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30622912

RESUMO

DNA extraction is an essential procedure when investigating microbial communities in environmental samples by sequencing technologies. High clay soils can be problematic as DNA adsorbs to the clay particles and can thereby be preserved from lysed, non-viable cells for a substantial period of time. In order to accurately estimate the intact and living microbial community in the soil, extracellular DNA from dead, remnant bacterial cells needs to be removed prior to DNA extraction. One possibility is to use a sodium phosphate buffer to release both extracellular DNA and bacterial cells from the clay particles. After removing the extracellular DNA by centrifugation, the remaining viable cells can be harvested and DNA extracted. The described method is a modification of a procedure for separating extracellular DNA and bacterial cells from acidic clay soils. •The modified method increases bacterial cell yields from acidic clay soils, such as acid sulfate soil.•The modified method eliminates some steps from the original method, as only DNA from intact bacterial cells is required.•The indirect DNA extraction method increases the workload compared to standard direct extraction methods, but subsequent downstream analyses will give a more representative picture of the viable microbial community composition in the soil.

6.
Sci Total Environ ; 625: 39-49, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29287211

RESUMO

Naturally occurring sulfide rich deposits are common along the northern Baltic Sea coast that when exposed to air, release large amounts of acid and metals into receiving water bodies. This causes severe environmental implications for agriculture, forestry, and building of infrastructure. In this study, we investigated the efficiency of ultrafine-grained calcium carbonate and peat (both separately and in combination) to mitigate acid and metal release. The experiments were carried out aerobically that mimicked summer conditions when the groundwater level is low and acid sulfate soils are exposed to oxygen, and anaerobically that is similar to autumn to spring conditions. The ultrafine-grained calcium carbonate dissipated well in the soil and its effect alone and when mixed with peat raised the pH and reduced pyrite dissolution while peat alone was similar to the controls and did not halt metal and acid release. High throughput 16S rRNA gene sequencing identified populations most similar to characterized acidophiles in the control and peat treated incubations while the acidophilic like populations were altered in the calcium carbonate alone and calcium carbonate plus peat treated acid sulfate soils. Coupled with the geochemistry data, it was suggested that the acidophiles were inactivated by the high pH in the presence of calcium carbonate but catalyzed pyrite dissolution in the controls and peat incubations. In conclusion, the anaerobic conditions during winter would likely be sufficient to mitigate acid production and metal release from acid sulfate soils and in the summer, treatment with calcium carbonate was the best mitigation method.


Assuntos
Ácidos/análise , Carbonato de Cálcio/química , Recuperação e Remediação Ambiental/métodos , Metais/análise , Microbiologia do Solo , Poluentes do Solo/análise , Solo/química , Água Subterrânea , Concentração de Íons de Hidrogênio , Ferro , RNA Ribossômico 16S , Sulfatos/química , Sulfetos
7.
Sci Total Environ ; 526: 215-21, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25933291

RESUMO

Potential acid sulfate soils contain reduced iron sulfides that if oxidized, can cause significant environmental damage by releasing large amounts of acid and metals. This study examines metal and acid release as well as the microbial community capable of catalyzing metal sulfide oxidation after treating acid sulfate soil with calcium carbonate (CaCO3) or calcium hydroxide (Ca(OH)2). Leaching tests of acid sulfate soil samples were carried out in the laboratory. The pH of the leachate during the initial flushing with water lay between 3.8 and 4.4 suggesting that the jarosite/schwertmannite equilibrium controls the solution chemistry. However, the pH increased to circa 6 after treatment with CaCO3 suspension and circa 12 after introducing Ca(OH)2 solution. 16S rRNA gene sequences amplified from community DNA extracted from the untreated and both CaCO3 and Ca(OH)2 treated acid sulfate soils were most similar to bacteria (69.1% to 85.7%) and archaea (95.4% to 100%) previously identified from acid and metal contaminated environments. These species included a Thiomonas cuprina-like and an Acidocella-like bacteria as well as a Ferroplasma acidiphilum-like archeon. Although the CaCO3 and Ca(OH)2 treatments did not decrease the proportion of microorganisms capable of accelerating acid and metal release, the chemical effects of the treatments suggested their reduced activity.


Assuntos
Monitoramento Ambiental , Recuperação e Remediação Ambiental/métodos , Microbiologia do Solo , Poluentes do Solo/análise , Sulfatos/análise , Solo/química
8.
FEMS Microbiol Ecol ; 84(3): 555-63, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23369102

RESUMO

Soils containing an approximately equal mixture of metastable iron sulfides and pyrite occur in the boreal Ostrobothnian coastal region of Finland, termed 'potential acid sulfate soil materials'. If the iron sulfides are exposed to air, oxidation reactions result in acid and metal release to the environment that can cause severe damage. Despite that acidophilic microorganisms catalyze acid and metal release from sulfide minerals, the microbiology of acid sulfate soil (ASS) materials has been neglected. The molecular phylogeny of a depth profile through the plough and oxidized ASS layers identified several known acidophilic microorganisms and environmental clones previously identified from acid- and metal-contaminated environments. In addition, several of the 16S rRNA gene sequences were more similar to sequences previously identified from cold environments. Leaching of the metastable iron sulfides and pyrite with an ASS microbial enrichment culture incubated at low pH accelerated metal release, suggesting microorganisms capable of catalyzing metal sulfide oxidation were present. The 16S rRNA gene analysis showed the presence of species similar to Acidocella sp. and other clones identified from acid mine environments. These data support that acid and metal release from ASSs was catalyzed by indigenous microorganisms adapted to low pH.


Assuntos
Bactérias/isolamento & purificação , Ferro/análise , Microbiologia do Solo , Solo/química , Sulfatos/análise , Sulfetos/análise , Bactérias/genética , Bactérias/metabolismo , Finlândia , Genes Bacterianos , Genes de RNAr , Concentração de Íons de Hidrogênio , Minerais/análise , Oxirredução , Filogenia , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...