Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 19(1): 539, 2019 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-31801481

RESUMO

BACKGROUND: Nitrogen dioxide (NO2) triggers hypersensitive response (HR)-like cell death in Arabidopsis thaliana. A high-throughput mutant screen was established to identify genes involved in this type of programmed cell death. RESULTS: Altogether 14,282 lines of SALK T-DNA insertion mutants were screened. Growing 1000 pooled mutant lines per tray and simultaneous NO2 fumigation of 4 trays in parallel facilitated high-throughput screening. Candidate mutants were selected based on visible symptoms. Sensitive mutants showed lesions already after fumigation for 1 h with 10 ppm (ppm) NO2 whereas tolerant mutants were hardly damaged even after treatment with 30 ppm NO2. Identification of T-DNA insertion sites by adapter ligation-mediated PCR turned out to be successful but rather time consuming. Therefore, next generation sequencing after T-DNA-specific target enrichment was tested as an alternative screening method. The targeted genome sequencing was highly efficient due to (1.) combination of the pooled DNA from 124 candidate mutants in only two libraries, (2.) successful target enrichment using T-DNA border-specific 70mer probes, and (3.) stringent filtering of the sequencing reads. Seventy mutated genes were identified by at least 3 sequencing reads. Ten corresponding mutants were re-screened of which 8 mutants exhibited NO2-sensitivity or -tolerance confirming that the screen yielded reliable results. Identified candidate genes had published functions in HR, pathogen resistance, and stomata regulation. CONCLUSIONS: The presented NO2 dead-or-alive screen combined with next-generation sequencing after T-DNA-specific target enrichment was highly efficient. Two researchers finished the screen within 3 months. Moreover, the target enrichment approach was cost-saving because of the limited number of DNA libraries and sequencing runs required. The experimental design can be easily adapted to other screening approaches e.g. involving high-throughput treatments with abiotic stressors or phytohormones.


Assuntos
Arabidopsis/genética , DNA Bacteriano/genética , Genoma de Planta , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mutação , Fenótipo
2.
Microorganisms ; 7(2)2019 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-30744114

RESUMO

Aquifers are typically perceived as rather stable habitats, characterized by low biogeochemical and microbial community dynamics. Upon contamination, aquifers shift to a perturbed ecological status, in which specialized populations of contaminant degraders establish and mediate aquifer restoration. However, the ecological controls of such degrader populations, and possible feedbacks between hydraulic and microbial habitat components, remain poorly understood. Here, we provide evidence of such couplings, via 4 years of annual sampling of groundwater and sediments across a high-resolution depth-transect of a hydrocarbon plume. Specialized anaerobic degrader populations are known to be established at the reactive fringes of the plume. Here, we show that fluctuations of the groundwater table were paralleled by pronounced dynamics of biogeochemical processes, pollutant degradation, and plume microbiota. Importantly, a switching in maximal relative abundance between dominant degrader populations within the Desulfobulbaceae and Desulfosporosinus spp. was observed after hydraulic dynamics. Thus, functional redundancy amongst anaerobic hydrocarbon degraders could have been relevant in sustaining biodegradation processes after hydraulic fluctuations. These findings contribute to an improved ecological perspective of contaminant plumes as a dynamic microbial habitat, with implications for both monitoring and remediation strategies in situ.

3.
Microb Ecol ; 75(2): 529-542, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28905200

RESUMO

The lower respiratory tract has been previously considered sterile in a healthy state, but advances in culture-independent techniques for microbial identification and characterization have revealed that the lung harbors a diverse microbiome. Although research on the lung microbiome is increasing and important questions were already addressed, longitudinal studies aiming to describe developmental stages of the microbial communities from the early neonatal period to adulthood are lacking. Thus, little is known about the early-life development of the lung microbiome and the impact of external factors during these stages. In this study, we applied a barcoding approach based on high-throughput sequencing of 16S ribosomal RNA gene amplicon libraries to determine age-dependent differences in the bacterial fraction of the murine lung microbiome and to assess potential influences of differing "environmental microbiomes" (simulated by the application of used litter material to the cages). We could clearly show that the diversity of the bacterial community harbored in the murine lung increases with age. Interestingly, bacteria belonging to the genera Delftia and Rhodococcus formed an age-independent core microbiome. The addition of the used litter material influenced the lung microbiota of young mice but did not significantly alter the community composition of adult animals. Our findings elucidate the dynamic nature of the early-life lung microbiota and its stabilization with age. Further, this study indicates that even slight environmental changes modulate the bacterial community composition of the lung microbiome in early life, whereas the lung microbes of adults demonstrate higher resilience towards environmental variations.


Assuntos
Bactérias/isolamento & purificação , Pulmão/microbiologia , Microbiota , Animais , Animais Recém-Nascidos/microbiologia , Bactérias/classificação , Bactérias/genética , DNA Bacteriano/genética , DNA Ribossômico/genética , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Camundongos , Camundongos Endogâmicos BALB C
4.
PLoS One ; 12(7): e0180859, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28704452

RESUMO

BACKGROUND: Changes in microbial community composition in the lung of patients suffering from moderate to severe COPD have been well documented. However, knowledge about specific microbiome structures in the human lung associated with CT defined abnormalities is limited. METHODS: Bacterial community composition derived from brush samples from lungs of 16 patients suffering from different CT defined subtypes of COPD and 9 healthy subjects was analyzed using a cultivation independent barcoding approach applying 454-pyrosequencing of 16S rRNA gene fragment amplicons. RESULTS: We could show that bacterial community composition in patients with changes in CT (either airway or emphysema type changes, designated as severe subtypes) was different from community composition in lungs of patients without visible changes in CT as well as from healthy subjects (designated as mild COPD subtype and control group) (PC1, Padj = 0.002). Higher abundance of Prevotella in samples from patients with mild COPD subtype and from controls and of Streptococcus in the severe subtype cases mainly contributed to the separation of bacterial communities of subjects. No significant effects of treatment with inhaled glucocorticoids on bacterial community composition were detected within COPD cases with and without abnormalities in CT in PCoA. Co-occurrence analysis suggests the presence of networks of co-occurring bacteria. Four communities of positively correlated bacteria were revealed. The microbial communities can clearly be distinguished by their associations with the CT defined disease phenotype. CONCLUSION: Our findings indicate that CT detectable structural changes in the lung of COPD patients, which we termed severe subtypes, are associated with alterations in bacterial communities, which may induce further changes in the interaction between microbes and host cells. This might result in a changed interplay with the host immune system.


Assuntos
Bactérias/classificação , Pulmão/microbiologia , Doença Pulmonar Obstrutiva Crônica/diagnóstico por imagem , Análise de Sequência de DNA/métodos , Tomografia Computadorizada por Raios X/métodos , Idoso , Bactérias/genética , Bactérias/isolamento & purificação , Código de Barras de DNA Taxonômico/métodos , DNA Bacteriano/genética , DNA Ribossômico/genética , Feminino , Humanos , Pulmão/diagnóstico por imagem , Masculino , Microbiota , Pessoa de Meia-Idade , Prevotella/classificação , Prevotella/genética , Prevotella/isolamento & purificação , Doença Pulmonar Obstrutiva Crônica/complicações , RNA Ribossômico 16S/genética , Streptococcus/classificação , Streptococcus/genética , Streptococcus/isolamento & purificação
6.
J Environ Sci (China) ; 46: 116-25, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27521943

RESUMO

In the first tier risk assessment (RA) of pesticides, risk for aquatic communities is estimated by using results from standard laboratory tests with algae, daphnids and fish for single pesticides such as herbicides, fungicides, and insecticides. However, fungi as key organisms for nutrient cycling in ecosystems as well as multiple pesticide applications are not considered in the RA. In this study, the effects of multiple low pesticide pulses using regulatory acceptable concentrations (RACs) on the dynamics of non-target aquatic fungi were investigated in a study using pond mesocosm. For that, fungi colonizing black alder (Alnus glutinosa) leaves were exposed to multiple, low pulses of 11 different pesticides over a period of 60days using a real farmer's pesticide application protocol for apple cropping. Four pond mesocosms served as treatments and 4 as controls. The composition of fungal communities colonizing the litter material was analyzed using a molecular fingerprinting approach based on the terminal Restriction Fragment Length Polymorphism (t-RFLP) of the fungal Internal Transcribed Spacer (ITS) region of the ribonucleic acid (RNA) gene(s). Our data indicated a clear fluctuation of fungal communities based on the degree of leaf litter degradation. However significant effects of the applied spraying sequence were not observed. Consequently also degradation rates of the litter material were not affected by the treatments. Our results indicate that the nutrient rich environment of the leaf litter material gave fungal communities the possibility to express genes that induce tolerance against the applied pesticides. Thus our data may not be transferred to other fresh water habitats with lower nutrient availability.


Assuntos
Fenômenos Ecológicos e Ambientais , Monitoramento Ambiental , Fungos/efeitos dos fármacos , Praguicidas/toxicidade , Microbiologia da Água , Poluentes Químicos da Água/toxicidade , Fungos/fisiologia , Fungicidas Industriais/análise , Fungicidas Industriais/toxicidade , Herbicidas/análise , Herbicidas/toxicidade , Inseticidas/análise , Inseticidas/toxicidade , Praguicidas/análise , Folhas de Planta , Poluentes Químicos da Água/análise
7.
Curr Diab Rep ; 16(7): 60, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27155610

RESUMO

Type 1 diabetes (T1D) is a complex autoimmune disease, and first stages of the disease typically develop early in life. Genetic as well as environmental factors are thought to contribute to the risk of developing autoimmunity against pancreatic beta cells. Several environmental factors, such as breastfeeding or early introduction of solid food, have been associated with increased risk for developing T1D. During the first years of life, the gut microbial community is shaped by the environment, in particular by dietary factors. Moreover, the gut microbiome has been described for its role in shaping the immune system early in life and early data suggest associations between T1D risk and alterations in gut microbial communities. In this article, we discuss environmental factors influencing the colonization process of the gut microbial community. Furthermore, we review possible interactions between the microbiome and the host that might contribute to the risk of developing T1D.


Assuntos
Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/microbiologia , Dieta , Microbioma Gastrointestinal , Animais , Autoimunidade , Aleitamento Materno , Comportamento Alimentar , Humanos
8.
Microbiome ; 4: 17, 2016 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-27114075

RESUMO

BACKGROUND: The development of anti-islet cell autoimmunity precedes clinical type 1 diabetes and occurs very early in life. During this early period, dietary factors strongly impact on the composition of the gut microbiome. At the same time, the gut microbiome plays a central role in the development of the infant immune system. A functional model of the association between diet, microbial communities, and the development of anti-islet cell autoimmunity can provide important new insights regarding the role of the gut microbiome in the pathogenesis of type 1 diabetes. RESULTS: A novel approach was developed to enable the analysis of the microbiome on an aggregation level between a single microbial taxon and classical ecological measures analyzing the whole microbial population. Microbial co-occurrence networks were estimated at age 6 months to identify candidates for functional microbial communities prior to islet autoantibody development. Stratification of children based on these communities revealed functional associations between diet, gut microbiome, and islet autoantibody development. Two communities were strongly associated with breast-feeding and solid food introduction, respectively. The third community revealed a subgroup of children that was dominated by Bacteroides abundances compared to two subgroups with low Bacteroides and increased Akkermansia abundances. The Bacteroides-dominated subgroup was characterized by early introduction of non-milk diet, increased risk for early autoantibody development, and by lower abundances of genes for the production of butyrate via co-fermentation of acetate. By combining our results with information from the literature, we provide a refined functional hypothesis for a protective role of butyrate in the pathogenesis of type 1 diabetes. CONCLUSIONS: Based on functional traits of microbial communities estimated from co-occurrence networks, we provide evidence that alterations in the composition of mucin degrading bacteria associate with early development of anti-islet cell autoimmunity. We hypothesize that lower levels of Bacteroides in favor of increased levels of Akkermansia lead to a competitive advantage of acetogens compared to sulfate reducing bacteria, resulting in increased butyrate production via co-fermentation of acetate. This hypothesis suggests that butyrate has a protective effect on the development of anti-islet cell autoantibodies.


Assuntos
Bacteroides/metabolismo , Ácido Butírico/metabolismo , Diabetes Mellitus Tipo 1/microbiologia , Microbioma Gastrointestinal/imunologia , Trato Gastrointestinal/microbiologia , Verrucomicrobia/metabolismo , Ácido Acético/imunologia , Ácido Acético/metabolismo , Adulto , Autoanticorpos/biossíntese , Autoimunidade , Bacteroides/imunologia , Aleitamento Materno , Ácido Butírico/imunologia , Criança , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/patologia , Dieta , Feminino , Fermentação , Trato Gastrointestinal/imunologia , Humanos , Imunidade Inata , Lactente , Ilhotas Pancreáticas/imunologia , Masculino , Verrucomicrobia/imunologia
9.
Extremophiles ; 20(3): 351-61, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27016195

RESUMO

Here we analyze the first complete genome sequence of Pyrococcus chitonophagus. The archaeon was previously suggested to belong to the Thermococcus rather than the Pyrococcus genus. Whole genome phylogeny as well as whole proteome comparisons using all available complete genomes in Thermococcales clearly showed that the species belongs to the Pyrococcus genus. P. chitonophagus was originally isolated from a hydrothermal vent site and it has been described to effectively degrade chitin debris, and therefore is considered to play a major role in the sea water ecology and metabolic activity of microbial consortia within hot sea water ecosystems. Indeed, an obvious feature of the P. chitonophagus genome is that it carries proteins showing complementary activities for chitin degradation, i.e. endo- and exo-chitinase, diacetylchitobiose deacetylase and exo-ß-D glucosaminidase activities. This finding supports the hypothesis that compared to other Thermococcales species P. chitonophagus is adapted to chitin degradation.


Assuntos
Genoma Arqueal , Pyrococcus/genética , Thermococcus/genética , Quitina/genética , Quitina/metabolismo , Filogenia , Pyrococcus/classificação , Thermococcus/classificação
10.
Environ Microbiol ; 18(6): 1988-2000, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26690731

RESUMO

Phosphorus (P) is an important macronutrient for all biota on earth but similarly a finite resource. Microorganisms play on both sides of the fence as they effectively mineralize organic and solubilize precipitated forms of soil phosphorus but conversely also take up and immobilize P. Therefore, we analysed the role of microbes in two beech forest soils with high and low P content by direct sequencing of metagenomic deoxyribonucleic acid. For inorganic P solubilization, a significantly higher microbial potential was detected in the P-rich soil. This trait especially referred to Candidatus Solibacter usiatus, likewise one of the dominating species in the data sets. A higher microbial potential for efficient phosphate uptake systems (pstSCAB) was detected in the P-depleted soil. Genes involved in P starvation response regulation (phoB, phoR) were prevalent in both soils. This underlines the importance of effective phosphate (Pho) regulon control for microorganisms to use alternative P sources during phosphate limitation. Predicted genes were primarily harboured by Rhizobiales, Actinomycetales and Acidobacteriales.


Assuntos
Bactérias/isolamento & purificação , Fósforo/análise , Microbiologia do Solo , Solo/química , Acidobacteria/genética , Acidobacteria/isolamento & purificação , Acidobacteria/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Florestas , Metagenômica , Fosfatos/metabolismo , Fósforo/metabolismo
11.
Front Microbiol ; 6: 1269, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26635741

RESUMO

Microbial communities in soil provide a wide range of ecosystem services. On the small scale, nutrient rich hotspots in soil developed from the activities of animals or plants are important drivers for the composition of microbial communities and their functional patterns. However, in subsoil, the spatial heterogeneity of microbes with differing lifestyles has been rarely considered so far. In this study, the phylogenetic composition of the bacterial and archaeal microbiome based on 16S rRNA gene pyrosequencing was investigated in the soil compartments bulk soil, drilosphere, and rhizosphere in top- and in the subsoil of an agricultural field. With co-occurrence network analysis, the spatial separation of typically oligotrophic and copiotrophic microbes was assessed. Four bacterial clusters were identified and attributed to bulk topsoil, bulk subsoil, drilosphere, and rhizosphere. The bacterial phyla Proteobacteria and Bacteroidetes, representing mostly copiotrophic bacteria, were affiliated mainly to the rhizosphere and drilosphere-both in topsoil and subsoil. Acidobacteria, Actinobacteria, Gemmatimonadetes, Planctomycetes, and Verrucomicrobia, bacterial phyla which harbor many oligotrophic bacteria, were the most abundant groups in bulk subsoil. The bacterial core microbiome in this soil was estimated to cover 7.6% of the bacterial sequencing reads including both oligotrophic and copiotrophic bacteria. In contrast the archaeal core microbiome includes 56% of the overall archaeal diversity. Thus, the spatial variability of nutrient quality and quantity strongly shapes the bacterial community composition and their interaction in subsoil, whereas archaea build a stable backbone of the soil prokaryotes due to their low variability in the different soil compartments.

12.
Front Microbiol ; 6: 1168, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26579082

RESUMO

The Osterseen Lake District in Bavaria consists of 19 small interconnected lakes that exhibit a pronounced trophic gradient from eutrophic to oligotrophic. It therefore presents a unique model system to address ecological questions regarding niche adaptation and Baas Becking's long standing hypothesis of "everything is everywhere, but the environment selects." Here, we present the first assessment of the microbial diversity in these lakes. We sampled the lakes in August and December and used 454 pyrosequencing of 16S rRNA amplicons to analyze the microbial diversity. The diversity patterns between lakes and seasons were compared and the bacterial community composition was correlated with key chemical and physical parameters. Distinct patterns of bacterial diversity only emerged at the level of individual OTUs (operational taxonomic units), but not at the level of the major bacterial phyla. This emphasizes the high functional and physiological diversity among bacterial species within a phylum and calls for analysis of biodiversity at the level of OTUs in order to understand fine-scale biogeography. We were able to identify a number of cosmopolitan OTUs as well as specialist OTUs that were restricted to certain lakes or seasons, suggesting adaptation to specific ecological niches.

13.
J Environ Qual ; 44(5): 1448-58, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26436262

RESUMO

Gravel aquifers act as important potable water sources in central western Europe, yet they are subject to numerous contamination pressures. Compositional and textural heterogeneity makes protection zone delineation around groundwater supplies in these units challenging; artificial tracer testing aids characterization. This paper reappraises previous tracer test results in light of new geological and microbiological data. Comparative passive gradient testing, using a fluorescent solute (Uranine), virus (H40/1 bacteriophage), and comparably sized bacterial tracers and , was used to investigate a calcareous gravel aquifer's ability to remove microbiological contaminants at a test site near Munich, Germany. Test results revealed relative recoveries could exceed those of H40/1 at monitoring wells, 10 m and 20 m from an injection well, by almost four times; recoveries varied by a factor of up to three between wells. Application of filtration theory suggested greater attenuation of H40/1 relative to similarly charged occurred due to differences in microorganism size, while estimated collision efficiencies appeared comparable. By contrast, more positively charged experienced greater attenuation at one monitoring point, while lower attenuation rates at the second location indicated the influence of geochemical heterogeneity. Test findings proved consistent with observations from nearby fresh outcrops that suggested thin open framework gravel beds dominated mass transport in the aquifer, while discrete intervals containing stained clasts reflect localized geochemical heterogeneity. Study results highlight the utility of reconciling outcrop observations with artificial tracer test responses, using microbiological tracers with well-defined properties, to characterize aquifer heterogeneity.

14.
Microb Ecol ; 69(4): 867-78, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25370887

RESUMO

Soil microbial community responses to elevated atmospheric CO2 concentrations (eCO2) occur mainly indirectly via CO2-induced plant growth stimulation leading to quantitative as well as qualitative changes in rhizodeposition and plant litter. In order to gain insight into short-term, site-specific effects of eCO2 on the microbial community structure at the plant-soil interface, young beech trees (Fagus sylvatica L.) from two opposing mountainous slopes with contrasting climatic conditions were incubated under ambient (360 ppm) CO2 concentrations in a greenhouse. One week before harvest, half of the trees were incubated for 2 days under eCO2 (1,100 ppm) conditions. Shifts in the microbial community structure in the adhering soil as well as in the root rhizosphere complex (RRC) were investigated via TRFLP and 454 pyrosequencing based on 16S ribosomal RNA (rRNA) genes. Multivariate analysis of the community profiles showed clear changes of microbial community structure between plants grown under ambient and elevated CO2 mainly in RRC. Both TRFLP and 454 pyrosequencing showed a significant decrease in the microbial diversity and evenness as a response of CO2 enrichment. While Alphaproteobacteria dominated by Rhizobiales decreased at eCO2, Betaproteobacteria, mainly Burkholderiales, remained unaffected. In contrast, Gammaproteobacteria and Deltaproteobacteria, predominated by Pseudomonadales and Myxococcales, respectively, increased at eCO2. Members of the order Actinomycetales increased, whereas within the phylum Acidobacteria subgroup Gp1 decreased, and the subgroups Gp4 and Gp6 increased under atmospheric CO2 enrichment. Moreover, Planctomycetes and Firmicutes, mainly members of Bacilli, increased under eCO2. Overall, the effect intensity of eCO2 on soil microbial communities was dependent on the distance to the roots. This effect was consistent for all trees under investigation; a site-specific effect of eCO2 in response to the origin of the trees was not observed.


Assuntos
Dióxido de Carbono/metabolismo , Fagus/metabolismo , Fagus/microbiologia , Microbiologia do Solo , Árvores/microbiologia , Meio Ambiente , Alemanha , Dados de Sequência Molecular , Polimorfismo de Fragmento de Restrição
15.
Microb Ecol ; 69(4): 879-83, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25501889

RESUMO

In this study, we investigated the impact of soil pH on the diversity and abundance of archaeal ammonia oxidizers in 27 different forest soils across Germany. DNA was extracted from topsoil samples, the amoA gene, encoding ammonia monooxygenase, was amplified; and the amplicons were sequenced using a 454-based pyrosequencing approach. As expected, the ratio of archaeal (AOA) to bacterial (AOB) ammonia oxidizers' amoA genes increased sharply with decreasing soil pH. The diversity of AOA differed significantly between sites with ultra-acidic soil pH (<3.5) and sites with higher pH values. The major OTUs from soil samples with low pH could be detected at each site with a soil pH <3.5 but not at sites with pH >4.5, regardless of geographic position and vegetation. These OTUs could be related to the Nitrosotalea group 1.1 and the Nitrososphaera subcluster 7.2, respectively, and showed significant similarities to OTUs described from other acidic environments. Conversely, none of the major OTUs typical of sites with a soil pH >4.6 could be found in the ultra- and extreme acidic soils. Based on a comparison with the amoA gene sequence data from a previous study performed on agricultural soils, we could clearly show that the development of AOA communities in soils with ultra-acidic pH (<3.5) is mainly triggered by soil pH and is not influenced significantly by the type of land use, the soil type, or the geographic position of the site, which was observed for sites with acido-neutral soil pH.


Assuntos
Amônia/metabolismo , Archaea/fisiologia , Florestas , Microbiota , Microbiologia do Solo , Alemanha , Concentração de Íons de Hidrogênio , Oxirredução , Solo/química
16.
ISME J ; 8(12): 2380-96, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24906017

RESUMO

A combinatory approach using metabolomics and gut microbiome analysis techniques was performed to unravel the nature and specificity of metabolic profiles related to gut ecology in obesity. This study focused on gut and liver metabolomics of two different mouse strains, the C57BL/6J (C57J) and the C57BL/6N (C57N) fed with high-fat diet (HFD) for 3 weeks, causing diet-induced obesity in C57N, but not in C57J mice. Furthermore, a 16S-ribosomal RNA comparative sequence analysis using 454 pyrosequencing detected significant differences between the microbiome of the two strains on phylum level for Firmicutes, Deferribacteres and Proteobacteria that propose an essential role of the microbiome in obesity susceptibility. Gut microbial and liver metabolomics were followed by a combinatory approach using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) and ultra performance liquid chromatography time of tlight MS/MS with subsequent multivariate statistical analysis, revealing distinctive host and microbial metabolome patterns between the C57J and the C57N strain. Many taurine-conjugated bile acids (TBAs) were significantly elevated in the cecum and decreased in liver samples from the C57J phenotype likely displaying different energy utilization behavior by the bacterial community and the host. Furthermore, several metabolite groups could specifically be associated with the C57N phenotype involving fatty acids, eicosanoids and urobilinoids. The mass differences based metabolite network approach enabled to extend the range of known metabolites to important bile acids (BAs) and novel taurine conjugates specific for both strains. In summary, our study showed clear alterations of the metabolome in the gastrointestinal tract and liver within a HFD-induced obesity mouse model in relation to the host-microbial nutritional adaptation.


Assuntos
Trato Gastrointestinal/microbiologia , Metaboloma , Microbiota , Obesidade/metabolismo , Obesidade/microbiologia , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Ácidos e Sais Biliares/metabolismo , Ceco/metabolismo , Ceco/microbiologia , Dieta Hiperlipídica , Fígado/metabolismo , Masculino , Metabolômica , Camundongos Endogâmicos C57BL , Espectrometria de Massas em Tandem
17.
Genome Announc ; 2(2)2014 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-24723717

RESUMO

Paenibacillus sp. P22 is a Gram-negative facultative anaerobic endospore-forming bacterium isolated from poplar hybrid 741 (♀[Populus alba × (P. davidiana + P. simonii) × P. tomentosa]). This bacterium shows strong similarities to Paenibacillus humicus, and important growth-promoting effects on in vitro grown explants of poplar hybrid 741 have been described.

18.
Front Microbiol ; 5: 96, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24659987

RESUMO

Alkane degrading microorganisms play an important role for the bioremediation of petrogenic contaminated environments. In this study, we investigated the effects of compost addition on the abundance and diversity of bacteria harboring the alkane monooxygenase gene (alkB) in an oil-contaminated soil originated from an industrial zone in Celje, Slovenia (Technosol). Soil without any amendments (control soil) and soil amended with two composts differing in their maturation stage and nutrient availability, were incubated under controlled conditions in a microcosm experiment and sampled after 0, 6, 12, and 36 weeks of incubation. As expected the addition of compost stimulated the degradation of alkanes in the investigated soil shortly after the addition. By using quantitative real-time PCR higher number of alkB genes were detected in soil samples amended with compost compared to the control soils. To get an insight into the composition of alkB harboring microbial communities, we performed next generation sequencing of amplicons of alkB gene fragment. Richness and diversity of alkB gene harboring prokaryotes was higher in soil mixed with compost compared to control soils with stronger effects of the less maturated, nutrient poor compost. The phylogenetic analysis of communities suggested that the addition of compost stimulated the abundance of alkB harboring Actinobacteria during the experiment independent from the maturation stage of the compost. AlkB harboring γ-proteobacteria like Shewanella or Hydrocarboniphaga as well as α-proteobacteria of the genus Agrobacterium responded also positively to the addition of compost to soil. The amendment of the less maturated, nutrient poor compost resulted in addition in a large increase of alkB harboring bacteria of the Cytophaga group (Microscilla) mainly at the early sampling time points. Our data indicates that compost amendments significantly change abundance and diversity pattern of alkB harboring microbes in Technosol and might be a useful agent to stimulate bioremediation of hydrocarbons in contaminated soils.

19.
Front Microbiol ; 5: 36, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24575080

RESUMO

Many bacteria belonging to the phylum of Actinobacteria are known as antagonists against phytpathogenic microbes. This study aimed to analyze the effect of ozone on the actinobacterial community of the rhizosphere of four years old European beech (Fagus sylvatica L.) trees during different time points of the vegetation period. Effects of ozone on the total community structure of Actinobacteria were studied based on the analysis of 16S rRNA gene amplicons. In addition effects of the ozone treatment on the diversity of potential biocontrol active Actionobacteria being able to produce antibiotics were characterized by using the type II polyketide synthases (PKS) genes as marker. Season as well as ozone treatments had a significant effect on parts of the actinobacterial rhizosphere community of European beech. However on the basis of the performed analysis, the diversity of Actinobacteria possessing type II PKS genes is neither affected by seasonal changes nor by the ozone treatments, indicating no influence of the investigated treatments on the biocontrol active part of the actinobacterial community.

20.
PLoS One ; 8(11): e80734, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24278315

RESUMO

Microbial communities play an important role in cheese ripening and determine the flavor and taste of different cheese types to a large extent. However, under adverse conditions human pathogens may colonize cheese samples during ripening and may thus cause severe outbreaks of diarrhoea and other diseases. Therefore in the present study we investigated the bacterial community structure of three raw ewe's milk cheese types, which are produced without the application of starter cultures during ripening from two production sites based on fingerprinting in combination with next generation sequencing of 16S rRNA gene amplicons. Overall a surprisingly high diversity was found in the analyzed samples and overall up to 213 OTU97 could be assigned. 20 of the major OTUs were present in all samples and include mostly lactic acid bacteria (LAB), mainly Lactococcus, and Enterococcus species. Abundance and diversity of these genera differed to a large extent between the 3 investigated cheese types and in response to the ripening process. Also a large number of non LAB genera could be identified based on phylogenetic alignments including mainly Enterobacteriaceae and Staphylococcacae. Some species belonging to these two families could be clearly assigned to species which are known as potential human pathogens like Staphylococcus saprophyticus or Salmonella spp. However, during cheese ripening their abundance was reduced. The bacterial genera, namely Lactobacillus, Streptococcus, Leuconostoc, Bifidobacterium, Brevibacterium, Corynebacterium, Clostridium, Staphylococcus, Thermoanerobacterium, E. coli, Hafnia, Pseudomonas, Janthinobacterium, Petrotoga, Kosmotoga, Megasphaera, Macrococcus, Mannheimia, Aerococcus, Vagococcus, Weissella and Pediococcus were identified at a relative low level and only in selected samples. Overall the microbial composition of the used milk and the management of the production units determined the bacterial community composition for all cheese types to a large extend, also at the late time points of cheese ripening.


Assuntos
Bactérias/crescimento & desenvolvimento , Queijo/microbiologia , Microbiota , Leite/microbiologia , Animais , Bactérias/genética , Sequência de Bases , Croácia , Feminino , Genes Bacterianos , Humanos , Microbiota/genética , Dados de Sequência Molecular , Filogenia , Polimorfismo de Fragmento de Restrição/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ovinos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...