Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 300: 122699, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31901515

RESUMO

The impact of four different growth conditions on the cell disruption efficiency of Neochloris oleoabundans was investigated. A mechanical and biological cell disruption methods were evaluated separately and combined. It has been established that microalgae grown in marine water under nitrogen deprivation were the most resistant against cell disruption methods and released the lowest amount of proteins. The release of lipids, however, followed the "hindered molecule diffusion phenomenon" because it did not follow the same release pattern as proteins. The enzymatic treatment was efficient enough to release the majority of the proteins without combining it with high-pressure homogenization. Regarding energy input, Neochloris oleoabundans grown in marine water under nitrogen deprivation required the highest energy input to release proteins (Ep = 13.76 kWh.kg-1) and to break the cells by high-pressure homogenization (Ex - HPH = 1.14 kWh.kg-1) or by the combination of enzymes and High-pressure homogenization (Ex - ENZ = 2.79 kWh.kg-1).


Assuntos
Clorófitas , Microalgas , Biomassa , Lipídeos , Nitrogênio
2.
Bioresour Technol ; 239: 204-210, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28521230

RESUMO

Several cell disruption methods were tested on Nannochloropsis gaditana, to evaluate their efficiency in terms of cell disintegration, energy input and release of soluble proteins. High-pressure homogenization (HPH) and bead milling were the most efficient with >95% cell disintegration, ±50% (w/w) release of total proteins and low energy input (<0.5kWh.kg-1biomass). Enzymatic treatment required low energy input (<0.34kWh.kg-1biomass), but it only released ±35% protein (w/w). Pulsed Electric Field (PEF) was neither energy-efficient (10.44kWh.kg-1biomass) nor successful for protein release (only 10% proteins w/w) and cell disintegration. The release of proteins after applying HPH and bead milling always required less intensive operating conditions for cell disruption. The energy cost per unit of released protein ranged from 0.15-0.25 €.kgProtein-1 in case of HPH, and up to 2-20 €.kgProtein-1 in case of PEF.


Assuntos
Proteínas de Plantas , Estramenópilas , Biomassa , Parede Celular , Microalgas , Água
3.
Bioresour Technol ; 225: 151-158, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27888732

RESUMO

A mild biorefinery process was investigated on the microalga Nannochloropsis gaditana, to obtain an enriched fraction of water soluble proteins free from chlorophyll. After harvesting, a 100g.L-1 solution of cells was first subjected to cell disruption by either high-pressure homogenization (HPH) or enzymatic treatment (ENZ). HPH resulted in a larger release of proteins (49%) in the aqueous phase compared to the Alcalase incubation (35%). In both cases, an ultrafiltration/diafiltration (UF/DF) was then performed on the supernatant obtained from cell disruption by testing different membrane cut-off (1000kDa, 500kDa and 300kDa). After optimising the process conditions, the combination of ENZ→UF/DF ended in a larger overall yield of water soluble proteins (24.8%) in the permeate compared to the combination of HPH→UF/DF (17.4%). A gel polarization model was implemented to assess the maximum achievable concentration factor during ultrafiltration and the mass transfer coefficient related to the theoretical permeation flux rate.


Assuntos
Microalgas/química , Proteínas/isolamento & purificação , Estramenópilas/química , Ultrafiltração/métodos , Clorofila/química , Membranas Artificiais , Polissacarídeos/química , Pressão , Solubilidade , Subtilisinas/química , Ultrafiltração/instrumentação , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...