Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 2216, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29396521

RESUMO

Deep brain stimulation (DBS) has evolved as a promising alternative treatment for Parkinson's disease (PD), but the underlying mechanisms remain poorly understood. Moreover, conventional DBS protocols targeted at basal ganglia sites can turn out completely ineffective for some PD patients, warranting the search for alternative targets. The inferior colliculus (IC) is a midbrain auditory relay station involved in sensorimotor processes. High-frequency 2500 Hz electrical stimulation of the IC elicits escape behaviour and interferes with haloperidol-induced catalepsy in rats, a state reminiscent of Parkinsonian akinesia, but clinical implication is limited since the protocol is aversive. However, typical DBS stimulation frequencies range between 20-180 Hz. We therefore tested the effects of a low-frequency 30 Hz-DBS protocol on haloperidol-induced catalepsy and aversive behaviour in rats. We show that low-frequency 30 Hz-DBS targeted at the IC strongly ameliorates haloperidol-induced catalepsy without any evidence of stimulation-induced escape behaviour. Furthermore, 30 Hz-DBS of the IC produced no place avoidance in a place conditioning paradigm and induced no anxiety-related behaviour on the elevated plus maze, indicating that the protocol has no aversive or anxiogenic side effects. Our findings provide first evidence that the IC can serve as an alternative, non-conventional DBS target.


Assuntos
Antipsicóticos/farmacologia , Catalepsia/induzido quimicamente , Catalepsia/terapia , Estimulação Encefálica Profunda , Haloperidol/farmacologia , Colículos Inferiores/efeitos da radiação , Animais , Modelos Animais de Doenças , Colículos Inferiores/fisiologia , Ratos
2.
Psychopharmacology (Berl) ; 235(1): 83-98, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28971233

RESUMO

RATIONALE: Fifty-kilohertz ultrasonic vocalizations (USV) in rats are believed to express inter-individual differences in trait-like positive affective phenotypes. Emission of 50-kHz USV can be induced by amphetamine (AMPH) to model mania-like positive affect, raising the possibility that predispositions for high 50-kHz USV production confer susceptibility to mania-like states. Such 50-kHz USV presumably express the sender's motivation for social contact and elicit social approach behavior in receivers. OBJECTIVES: We recently showed that AMPH-induced 50-kHz USV are paralleled by mania-like patterns of enhanced social approach behavior towards playback of 50-kHz USV. Here, we assessed whether these AMPH effects are dependent on trait-like inter-individual differences in 50-kHz USV production. METHODS: To this aim, we subdivided juvenile rats into those emitting low (LC) and high (HC) rates of baseline 50-kHz USV and compared them across four AMPH dosage conditions: 0.0, 0.5, 1.0, and 2.5 mg/kg. RESULTS: HC rats were considerably more susceptible to AMPH in inducing 50-kHz USV than LC rats, consistently across all examined doses. They further appeared to attribute more incentive salience to signals of rewarding social contact, as evidenced by enhanced social approach behavior towards 50-kHz USV playback, a response pattern also seen in LC rats after receiving AMPH treatment. HC but not LC rats emitted aversive 22-kHz USV following 50-kHz USV playback, indicating increased proneness to experience negative affective states if no actual social consequence followed the incentive signal. CONCLUSION: Inter-individual differences in 50-kHz USV map onto a unique trait-like socio-affective phenotype associated with enhanced emotional reactivity towards social and non-social reward, possibly conferring risk to mania-like states.


Assuntos
Afeto/efeitos dos fármacos , Comportamento Social , Vocalização Animal/fisiologia , Anfetamina/farmacologia , Animais , Transtorno Bipolar/induzido quimicamente , Transtorno Bipolar/psicologia , Estimulantes do Sistema Nervoso Central/farmacologia , Relação Dose-Resposta a Droga , Individualidade , Masculino , Atividade Motora/efeitos dos fármacos , Fenótipo , Ratos , Recompensa , Ultrassom
3.
J Vis Exp ; (129)2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29155767

RESUMO

In vivo electrophysiology is a powerful technique to investigate the relationship between brain activity and behavior at a millisecond and micrometer scale. However, current methods mostly rely on tethered cable recordings or only use unidirectional systems, allowing either recording or stimulation of neural activity, but not at the same time or same target. Here, a new wireless, bidirectional device for simultaneous multichannel recording and stimulation of neural activity in freely behaving rats is described. The system operates through a single portable head stage that both transmits recorded activity and can be targeted in real-time for brain stimulation using a telemetry-based multichannel software. The head stage is equipped with a preamplifier and a rechargeable battery, allowing stable long-term recordings or stimulation for up to 1 h. Importantly, the head stage is compact, weighs 12 g (including battery) and thus has minimal impact on the animal´s behavioral repertoire, making the method applicable to a broad set of behavioral tasks. Moreover, the method has the major advantage that the effect of brain stimulation on neural activity and behavior can be measured simultaneously, providing a tool to assess the causal relationships between specific brain activation patterns and behavior. This feature makes the method particularly valuable for the field of deep brain stimulation, allowing precise assessment, monitoring, and adjustment of stimulation parameters during long-term behavioral experiments. The applicability of the system has been validated using the inferior colliculus as a model structure.


Assuntos
Eletrodos Implantados , Eletrofisiologia/métodos , Tecnologia sem Fio/instrumentação , Animais , Eletrofisiologia/instrumentação , Masculino , Ratos , Ratos Wistar
4.
Eur Neuropsychopharmacol ; 27(3): 261-273, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28119084

RESUMO

Communication is the act of information transfer between sender and receiver. In rats, vocal communication can be studied through ultrasonic vocalizations (USV). 50-kHz USV occur in appetitive situations, most notably juvenile play, likely expressing the sender׳s positive affective state. Such appetitive 50-kHz USV serve important pro-social communicative functions and elicit social exploratory and approach behavior in the receiver. Emission of 50-kHz USV can be induced pharmacologically by the administration of psychostimulant drugs, such as amphetamine. However, it is unknown whether amphetamine affects the pro-social communicative function of 50-kHz USV in the receiver. We therefore assessed dose-response effects of amphetamine (0.0mg/kg, 0.5mg/kg, 1.0mg/kg, 2.5mg/kg, 5.0mg/kg) on pro-social ultrasonic communication on both, sender and receiver, in juvenile rats. We found an inverted U-shaped effect of amphetamine on 50-kHz USV emission, with 50-kHz USV levels being strongly enhanced by moderate doses, yet less prominent effects were seen following the highest dose. Likewise, amphetamine exerted inverted U-shaped effects on social exploratory and approach behavior induced by playback of appetitive 50-kHz USV. Social approach was enhanced by moderate amphetamine doses, but completely abolished following the highest dose. Amphetamine further dose-dependently promoted the emission of 50-kHz USV following playback of appetitive 50-kHz USV, indicating more vigorous attempts to establish social proximity. Our results support an important role of dopamine in closing a perception-and-action-loop through linking mechanisms relevant for detection and production of social vocalizations. Moreover, our approach possibly provides a new means to study mania-like aberrant social interaction and communication in animal models for bipolar disorder.


Assuntos
Anfetamina/farmacologia , Estimulantes do Sistema Nervoso Central/farmacologia , Ultrassom/métodos , Vocalização Animal/efeitos dos fármacos , Análise de Variância , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Relação Dose-Resposta a Droga , Comportamento Exploratório/efeitos dos fármacos , Hipercinese/induzido quimicamente , Aprendizagem em Labirinto/efeitos dos fármacos , Ratos , Ratos Wistar
5.
Curr Top Behav Neurosci ; 30: 67-89, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-26577915

RESUMO

Ultrasonic vocalizations (USV) serve important communicative functions as socio-affective signals in rats. In aversive situations, such as inter-male aggression and predator exposure, 22-kHz USV are emitted. They likely function as appeasement signals during fighting and/or as alarm calls to warn conspecifics. In appetitive situations, 50-kHz USV are uttered, most notably during social interactions, such as rough-and-tumble play and mating. It is believed that they fulfill an affiliative function as social contact calls. Social experiences or their lack, such as social isolation, can have profound impact on the emission of 22- and 50-kHz USV by the sender in later life, albeit direction and strength of observed effects vary, with time point of occurrence and duration being critical determinants. Little, however, is known about how social experiences affect the behavioral responses evoked by 22- and 50-kHz USV in the recipient. By means of our 50-kHz USV radial maze playback paradigm, we recently showed that the behavioral response elicited in the recipient is affected by post-weaning social isolation. Rats exposed to four weeks of isolation during the rough-and-tumble play period did not display social approach behavior toward 50-kHz USV but some signs of social avoidance. We further found that physical environmental enrichment providing minimal opportunities for social interactions has similar detrimental effects. Together, this indicates that social experiences can affect socio-affective communication in rodents, both at the level of sender and recipient. Deficits seen following post-weaning social isolation or physical environmental enrichment might be useful to model aspects of neurodevelopmental disorders characterized by social and communication deficits, such as autism and schizophrenia.


Assuntos
Comportamento Social , Vocalização Animal/fisiologia , Animais , Masculino , Ratos , Ondas Ultrassônicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...