Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(6)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38544208

RESUMO

Frequency mixing magnetic detection (FMMD) is a sensitive and selective technique to detect magnetic nanoparticles (MNPs) serving as probes for binding biological targets. Its principle relies on the nonlinear magnetic relaxation dynamics of a particle ensemble interacting with a dual frequency external magnetic field. In order to increase its sensitivity, lower its limit of detection and overall improve its applicability in biosensing, matching combinations of external field parameters and internal particle properties are being sought to advance FMMD. In this study, we systematically probe the aforementioned interaction with coupled Néel-Brownian dynamic relaxation simulations to examine how key MNP properties as well as applied field parameters affect the frequency mixing signal generation. It is found that the core size of MNPs dominates their nonlinear magnetic response, with the strongest contributions from the largest particles. The drive field amplitude dominates the shape of the field-dependent response, whereas effective anisotropy and hydrodynamic size of the particles only weakly influence the signal generation in FMMD. For tailoring the MNP properties and parameters of the setup towards optimal FMMD signal generation, our findings suggest choosing large particles of core sizes dC>25 nm with narrow size distributions (σ<0.1) to minimize the required drive field amplitude. This allows potential improvements of FMMD as a stand-alone application, as well as advances in magnetic particle imaging, hyperthermia and magnetic immunoassays.

2.
Sci Rep ; 11(1): 16800, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34408243

RESUMO

Cardiopulmonary bypass (CPB) is a standard technique for cardiac surgery, but comes with the risk of severe neurological complications (e.g. stroke) caused by embolisms and/or reduced cerebral perfusion. We report on an aortic cannula prototype design (optiCAN) with helical outflow and jet-splitting dispersion tip that could reduce the risk of embolic events and restores cerebral perfusion to 97.5% of physiological flow during CPB in vivo, whereas a commercial curved-tip cannula yields 74.6%. In further in vitro comparison, pressure loss and hemolysis parameters of optiCAN remain unaffected. Results are reproducibly confirmed in silico for an exemplary human aortic anatomy via computational fluid dynamics (CFD) simulations. Based on CFD simulations, we firstly show that optiCAN design improves aortic root washout, which reduces the risk of thromboembolism. Secondly, we identify regions of the aortic intima with increased risk of plaque release by correlating areas of enhanced plaque growth and high wall shear stresses (WSS). From this we propose another easy-to-manufacture cannula design (opti2CAN) that decreases areas burdened by high WSS, while preserving physiological cerebral flow and favorable hemodynamics. With this novel cannula design, we propose a cannulation option to reduce neurological complications and the prevalence of stroke in high-risk patients after CPB.


Assuntos
Aorta/cirurgia , Cânula/normas , Procedimentos Cirúrgicos Cardíacos/instrumentação , Ponte Cardiopulmonar/métodos , Animais , Circulação Cerebrovascular/fisiologia , Simulação por Computador , Modelos Animais de Doenças , Hemodinâmica , Humanos , Fatores de Risco , Acidente Vascular Cerebral/fisiopatologia , Acidente Vascular Cerebral/prevenção & controle , Suínos , Tromboembolia/fisiopatologia , Tromboembolia/prevenção & controle
3.
Nanomaterials (Basel) ; 11(5)2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-34064640

RESUMO

Dual frequency magnetic excitation of magnetic nanoparticles (MNP) enables enhanced biosensing applications. This was studied from an experimental and theoretical perspective: nonlinear sum-frequency components of MNP exposed to dual-frequency magnetic excitation were measured as a function of static magnetic offset field. The Langevin model in thermodynamic equilibrium was fitted to the experimental data to derive parameters of the lognormal core size distribution. These parameters were subsequently used as inputs for micromagnetic Monte-Carlo (MC)-simulations. From the hysteresis loops obtained from MC-simulations, sum-frequency components were numerically demodulated and compared with both experiment and Langevin model predictions. From the latter, we derived that approximately 90% of the frequency mixing magnetic response signal is generated by the largest 10% of MNP. We therefore suggest that small particles do not contribute to the frequency mixing signal, which is supported by MC-simulation results. Both theoretical approaches describe the experimental signal shapes well, but with notable differences between experiment and micromagnetic simulations. These deviations could result from Brownian relaxations which are, albeit experimentally inhibited, included in MC-simulation, or (yet unconsidered) cluster-effects of MNP, or inaccurately derived input for MC-simulations, because the largest particles dominate the experimental signal but concurrently do not fulfill the precondition of thermodynamic equilibrium required by Langevin theory.

4.
Artif Organs ; 45(9): 1024-1035, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33851427

RESUMO

As a leading cause of death worldwide, heart failure is a serious medical condition in which many critically ill patients require temporary mechanical circulatory support (MCS) as a bridge-to-recovery or bridge-to-decision. In many cases, the TandemHeart system is used to unload the left heart by draining blood from the left atrium (LA) to the femoral artery via a transseptal multistage cannula. However, even though the correct positioning of the cannula is crucial for a safe treatment, the long cannula tip currently used in transseptal cannulas complicates positioning, making the cannula vulnerable to displacement during MCS. To overcome these limitations, we propose the development of a new tipless transseptal cannula with improved hemodynamic properties. We discuss the tipless cannula concept by comparing it to the common multistage cannula concept using computational fluid dynamics simulations and assess the flow field in the LA, the wall shear stresses (WSS), and the pressure loss. Across the two distinct time points of end-systole and end-diastole and two drainage flow rates of 3.5 and 5.0 L/min, we find a more homogeneous inlet flow pattern for the tipless cannula concept, accompanied by a remarkably reduced area of platelet-activating WSS (up to 10-times smaller area compared to the multistage cannula). Moreover, pressure loss is up to 14.5% lower in the tipless cannula concept, confirming overall improved hemodynamic properties of the tipless cannula concept. Finally, a diameter-dependent study reveals that lower WSS and pressure losses can be further reduced by large-lumen designs for any simulation setting. Overall, our results suggest that a tipless cannula concept remedies the crucial disadvantages of a long-tip multistage cannula by reducing the risk of misplacement, and it furthermore promotes optimized hemodynamics. With this successful proof-of-concept, we underscore the potential for and encourage the realization of further experimental investigations regarding the development of a tipless transseptal cannula for MCS.


Assuntos
Cânula , Coração Auxiliar , Hemodinâmica/fisiologia , Simulação por Computador , Desenho de Equipamento , Humanos , Modelos Cardiovasculares , Estudo de Prova de Conceito
5.
Nanotechnology ; 30(18): 184004, 2019 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-30699387

RESUMO

The internalization kinetics resulting from magnetic nanoparticle interactions with tumor cells play an important role in nanoparticle-based cancer treatment efficiency. Here, the uptake kinetics of magnetoliposomes (ML) into human pancreatic tumor cells (MiaPaCa-2 and BxPC-3) are quantified using magnetic particle spectrometry. A comparison to the uptake kinetics for healthy L929 cells is given. The experimental results are used for the development of an uptake kinetics model describing the three relevant internalization processes: ML adsorption to the cell membrane, endo- and exocytosis. By fitting of experimental data, the rate constant of each internalization process is determined enabling the prediction of internalized ML at any incubation time. After seven hours incubation time, MiaPaCa-2 internalized three times more ML than BxPC-3 and L929 cells even though their ML adsorption rate constants were nearly the same. As the interaction of the ML with the cell membrane is non-specific, the uptake kinetics mirror the individual cell response to ML internalization. With a new mathematical term to cover the exocytosis contribution to the overall internalization process, the extended uptake kinetics model offers new possibilities to analyze the specific internalization mechanism for other nanoparticle and cell types.


Assuntos
Membrana Celular , Magnetismo , Modelos Biológicos , Nanopartículas/uso terapêutico , Neoplasias Pancreáticas , Animais , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Membrana Celular/patologia , Endocitose , Exocitose , Humanos , Cinética , Lipossomos , Camundongos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia
6.
Sci Rep ; 8(1): 13210, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30181576

RESUMO

Many efforts are made worldwide to establish magnetic fluid hyperthermia (MFH) as a treatment for organ-confined tumors. However, translation to clinical application hardly succeeds as it still lacks of understanding the mechanisms determining MFH cytotoxic effects. Here, we investigate the intracellular MFH efficacy with respect to different parameters and assess the intracellular cytotoxic effects in detail. For this, MiaPaCa-2 human pancreatic tumor cells and L929 murine fibroblasts were loaded with iron-oxide magnetic nanoparticles (MNP) and exposed to MFH for either 30 min or 90 min. The resulting cytotoxic effects were assessed via clonogenic assay. Our results demonstrate that cell damage depends not only on the obvious parameters bulk temperature and duration of treatment, but most importantly on cell type and thermal energy deposited per cell during MFH treatment. Tumor cell death of 95% was achieved by depositing an intracellular total thermal energy with about 50% margin to damage of healthy cells. This is attributed to combined intracellular nanoheating and extracellular bulk heating. Tumor cell damage of up to 86% was observed for MFH treatment without perceptible bulk temperature rise. Effective heating decreased by up to 65% after MNP were internalized inside cells.


Assuntos
Hipertermia Induzida/métodos , Nanopartículas de Magnetita/uso terapêutico , Neoplasias Pancreáticas/terapia , Animais , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Temperatura Alta , Humanos , Magnetismo/métodos , Camundongos , Pâncreas/patologia , Neoplasias Pancreáticas/patologia , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...