Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ther Oncol ; 32(2): 200797, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38601972

RESUMO

Acute myeloid leukemia (AML), a fast-progressing hematological malignancy affecting myeloid cells, is typically treated with chemotherapy or hematopoietic stem cell transplantation. However, approximately half of the patients face relapses and 5-year survival rates are poor. With the goal to facilitate dual-specificity, boosting anti-tumor activity, and minimizing the risk for antigen escape, this study focused on combining chimeric antigen receptor (CAR) and T cell receptor (TCR) technologies. CAR'TCR-T cells, co-expressing a CD33-CAR and a transgenic dNPM1-TCR, revealed increased and prolonged anti-tumor activity in vitro, particularly in case of low target antigen expression. The distinct transcriptomic profile suggested enhanced formation of immunological synapses, activation, and signaling. Complete elimination of AML xenografts in vivo was only achieved with a cell product containing CAR'TCR-T, CAR-T, and TCR-T cells, representing the outcome of co-transduction with two lentiviral vectors encoding either CAR or TCR. A mixture of CAR-T and TCR-T cells, without CAR'TCR-T cells, did not prevent progressive tumor outgrowth and was comparable to treatment with CAR-T and TCR-T cells individually. Overall, our data underscore the efficacy of co-expressing CAR and transgenic TCR in one T cell, and might open a novel therapeutic avenue not only for AML but also other malignancies.

2.
Clin Cancer Res ; 30(8): 1642-1654, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38190111

RESUMO

PURPOSE: To achieve eradication of solid tumors, we examined how many neoantigens need to be targeted with how many T-cell receptors (TCR) by which type of T cells. EXPERIMENTAL DESIGN: Unmanipulated, naturally expressed (autochthonous) neoantigens were targeted with adoptively transferred TCR-engineered autologous T cells (TCR-therapy). TCR-therapy used CD8+ T-cell subsets engineered with TCRs isolated from CD8+ T cells (CD8+TCR-therapy), CD4+ T-cell subsets engineered with TCRs isolated from CD4+ T cells (CD4+TCR-therapy), or combinations of both. The targeted tumors were established for at least 3 weeks and derived from primary autochthonous cancer cell cultures, resembling natural solid tumors and their heterogeneity as found in humans. RESULTS: Relapse was common with CD8+TCR-therapy even when targeting multiple different autochthonous neoantigens on heterogeneous solid tumors. CD8+TCR-therapy was only effective against homogenous tumors artificially derived from a cancer cell clone. In contrast, a combination of CD8+TCR-therapy with CD4+TCR-therapy, each targeting one neoantigen, eradicated large and established solid tumors of natural heterogeneity. CD4+TCR-therapy targeted a mutant neoantigen on tumor stroma while direct cancer cell recognition by CD8+TCR-therapy was essential for cure. In vitro data were consistent with elimination of cancer cells requiring a four-cell cluster composed of TCR-engineered CD4+ and CD8+ T cells together with antigen-presenting cells and cancer cells. CONCLUSIONS: Two cancer-specific TCRs can be essential and sufficient to eradicate heterogeneous solid tumors expressing unmanipulated, autochthonous targets. We demonstrate that simplifications to adoptive TCR-therapy are possible without compromising efficacy.


Assuntos
Antígenos de Neoplasias , Neoplasias , Humanos , Antígenos de Neoplasias/imunologia , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Neoplasias/imunologia , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/genética , Imunoterapia Adotiva/métodos
3.
Mol Ther ; 31(8): 2309-2325, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37312454

RESUMO

Multiple clinical studies have treated mesothelin (MSLN)-positive solid tumors by administering MSLN-directed chimeric antigen receptor (CAR) T cells. Although these products are generally safe, efficacy is limited. Therefore, we generated and characterized a potent, fully human anti-MSLN CAR. In a phase 1 dose-escalation study of patients with solid tumors, we observed two cases of severe pulmonary toxicity following intravenous infusion of this product in the high-dose cohort (1-3 × 108 T cells per m2). Both patients demonstrated progressive hypoxemia within 48 h of infusion with clinical and laboratory findings consistent with cytokine release syndrome. One patient ultimately progressed to grade 5 respiratory failure. An autopsy revealed acute lung injury, extensive T cell infiltration, and accumulation of CAR T cells in the lungs. RNA and protein detection techniques confirmed low levels of MSLN expression by benign pulmonary epithelial cells in affected lung and lung samples obtained from other inflammatory or fibrotic conditions, indicating that pulmonary pneumocyte and not pleural expression of mesothelin may lead to dose-limiting toxicity. We suggest patient enrollment criteria and dosing regimens of MSLN-directed therapies consider the possibility of dynamic expression of mesothelin in benign lung with a special concern for patients with underlying inflammatory or fibrotic conditions.


Assuntos
Mesotelina , Neoplasias , Humanos , Proteínas Ligadas por GPI/genética , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Neoplasias/terapia , Linfócitos T
4.
Cancer Discov ; 13(9): 1982-1997, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37249512

RESUMO

CAR T-cell product quality and stemness (Tstem) are major determinants of in vivo expansion, efficacy, and clinical response. Prolonged ex vivo culturing is known to deplete Tstem, affecting clinical outcome. YTB323, a novel autologous CD19-directed CAR T-cell therapy expressing the same validated CAR as tisagenlecleucel, is manufactured using a next-generation platform in <2 days. Here, we report the preclinical development and preliminary clinical data of YTB323 in adults with relapsed/refractory diffuse large B-cell lymphoma (r/r DLBCL; NCT03960840). In preclinical mouse models, YTB323 exhibited enhanced in vivo expansion and antitumor activity at lower doses than traditionally manufactured CAR T cells. Clinically, at doses 25-fold lower than tisagenlecleucel, YTB323 showed (i) promising overall safety [cytokine release syndrome (any grade, 35%; grade ≥3, 6%), neurotoxicity (any grade, 25%; grade ≥3, 6%)]; (ii) overall response rates of 75% and 80% for DL1 and DL2, respectively; (iii) comparable CAR T-cell expansion; and (iv) preservation of T-cell phenotype. Current data support the continued development of YTB323 for r/r DLBCL. SIGNIFICANCE: Traditional CAR T-cell manufacturing requires extended ex vivo cell culture, reducing naive and stem cell memory T-cell populations and diminishing antitumor activity. YTB323, which expresses the same validated CAR as tisagenlecleucel, can be manufactured in <2 days while retaining T-cell stemness and enhancing clinical activity at a 25-fold lower dose. See related commentary by Wang, p. 1961. This article is featured in Selected Articles from This Issue, p. 1949.


Assuntos
Linfoma Difuso de Grandes Células B , Linfoma não Hodgkin , Receptores de Antígenos Quiméricos , Camundongos , Animais , Imunoterapia Adotiva , Técnicas de Cultura de Células , Antígenos CD19
5.
Nat Med ; 27(5): 842-850, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33888899

RESUMO

While CD19-directed chimeric antigen receptor (CAR) T cells can induce remission in patients with B cell acute lymphoblastic leukemia (ALL), a large subset relapse with CD19- disease. Like CD19, CD22 is broadly expressed by B-lineage cells and thus serves as an alternative immunotherapy target in ALL. Here we present the composite outcomes of two pilot clinical trials ( NCT02588456 and NCT02650414 ) of T cells bearing a 4-1BB-based, CD22-targeting CAR in patients with relapsed or refractory ALL. The primary end point of these studies was to assess safety, and the secondary end point was antileukemic efficacy. We observed unexpectedly low response rates, prompting us to perform detailed interrogation of the responsible CAR biology. We found that shortening of the amino acid linker connecting the variable heavy and light chains of the CAR antigen-binding domain drove receptor homodimerization and antigen-independent signaling. In contrast to CD28-based CARs, autonomously signaling 4-1BB-based CARs demonstrated enhanced immune synapse formation, activation of pro-inflammatory genes and superior effector function. We validated this association between autonomous signaling and enhanced function in several CAR constructs and, on the basis of these observations, designed a new short-linker CD22 single-chain variable fragment for clinical evaluation. Our findings both suggest that tonic 4-1BB-based signaling is beneficial to CAR function and demonstrate the utility of bedside-to-bench-to-bedside translation in the design and implementation of CAR T cell therapies.


Assuntos
Ligante 4-1BB/metabolismo , Imunoterapia Adotiva/métodos , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Receptores de Antígenos Quiméricos/metabolismo , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Linfócitos T/transplante , Adulto , Animais , Antígenos CD19/metabolismo , Linfócitos B/imunologia , Antígenos CD28/genética , Células Cultivadas , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Camundongos , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Linfócitos T/imunologia , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
6.
JCI Insight ; 3(7)2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29618658

RESUMO

Pancreatic ductal adenocarcinoma (PDA) is characterized by its highly immunosuppressive tumor microenvironment (TME) that limits T cell infiltration and induces T cell hypofunction. Mesothelin-redirected chimeric antigen receptor T cell (meso-CAR T cell) therapy has shown some efficacy in clinical trials but antitumor efficacy remains modest. We hypothesized that combined meso-CAR T cells with an oncolytic adenovirus expressing TNF-α and IL-2 (Ad5/3-E2F-D24-TNFa-IRES-IL2, or OAd-TNFa-IL2) would improve efficacy. OAd-TNFa-IL2 enhanced the antitumor efficacy of meso-CAR T cells in human-PDA-xenograft immunodeficient mice and efficacy was associated with robustly increased tumor-infiltrating lymphocytes (TILs), enhanced and prolonged T cell function. Mice treated with parental OAd combined with meso-CAR T developed tumor metastasis to the lungs even if primary tumors were controlled. However, no mice treated with combined OAd-TNFa-IL2 and meso-CAR T died of tumor metastasis. We also evaluated this approach in a syngeneic mouse tumor model by combining adenovirus expressing murine TNF-α and IL-2 (Ad-mTNFa-mIL2) and mouse CAR T cells. This approach induced significant tumor regression in mice engrafted with highly aggressive and immunosuppressive PDA tumors. Ad-mTNFa-mIL2 increased both CAR T cell and host T cell infiltration to the tumor and altered host tumor immune status with M1 polarization of macrophages and increased dendritic cell maturation. These findings indicate that combining cytokine-armed oncolytic adenovirus to enhance the efficacy of CAR T cell therapy is a promising approach to overcome the immunosuppressive TME for the treatment of PDA.


Assuntos
Carcinoma Ductal Pancreático/terapia , Proteínas Ligadas por GPI/imunologia , Imunoterapia Adotiva/métodos , Terapia Viral Oncolítica/métodos , Neoplasias Pancreáticas/terapia , Adenoviridae/imunologia , Animais , Carcinoma Ductal Pancreático/imunologia , Linhagem Celular Tumoral , Terapia Combinada/métodos , Humanos , Linfócitos do Interstício Tumoral/imunologia , Mesotelina , Camundongos , Vírus Oncolíticos/imunologia , Neoplasias Pancreáticas/imunologia , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Linfócitos T/transplante , Microambiente Tumoral/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Nature ; 545(7652): 98-102, 2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28445461

RESUMO

The relative contribution of the effector molecules produced by T cells to tumour rejection is unclear, but interferon-γ (IFNγ) is critical in most of the analysed models. Although IFNγ can impede tumour growth by acting directly on cancer cells, it must also act on the tumour stroma for effective rejection of large, established tumours. However, which stroma cells respond to IFNγ and by which mechanism IFNγ contributes to tumour rejection through stromal targeting have remained unknown. Here we use a model of IFNγ induction and an IFNγ-GFP fusion protein in large, vascularized tumours growing in mice that express the IFNγ receptor exclusively in defined cell types. Responsiveness to IFNγ by myeloid cells and other haematopoietic cells, including T cells or fibroblasts, was not sufficient for IFNγ-induced tumour regression, whereas responsiveness of endothelial cells to IFNγ was necessary and sufficient. Intravital microscopy revealed IFNγ-induced regression of the tumour vasculature, resulting in arrest of blood flow and subsequent collapse of tumours, similar to non-haemorrhagic necrosis in ischaemia and unlike haemorrhagic necrosis induced by tumour necrosis factor. The early events of IFNγ-induced tumour ischaemia resemble non-apoptotic blood vessel regression during development, wound healing or IFNγ-mediated, pregnancy-induced remodelling of uterine arteries. A better mechanistic understanding of how solid tumours are rejected may aid the design of more effective protocols for adoptive T-cell therapy.


Assuntos
Vasos Sanguíneos/crescimento & desenvolvimento , Hipóxia Celular/imunologia , Interferon gama/imunologia , Isquemia/imunologia , Neoplasias/irrigação sanguínea , Neoplasias/imunologia , Remodelação Vascular , Animais , Vasos Sanguíneos/imunologia , Vasos Sanguíneos/metabolismo , Linhagem Celular Tumoral , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Feminino , Interferon gama/biossíntese , Microscopia Intravital , Isquemia/metabolismo , Isquemia/patologia , Masculino , Camundongos , Necrose , Neoplasias/metabolismo , Neoplasias/patologia , Receptores de Interferon/metabolismo , Células Estromais/imunologia , Células Estromais/metabolismo , Especificidade por Substrato , Cicatrização , Receptor de Interferon gama
8.
Immunity ; 44(6): 1444-54, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27332733

RESUMO

Genetically modified T cells expressing chimeric antigen receptors (CARs) demonstrate robust responses against lineage restricted, non-essential targets in hematologic cancers. However, in solid tumors, the full potential of CAR T cell therapy is limited by the availability of cell surface antigens with sufficient cancer-specific expression. The majority of CAR targets have been normal self-antigens on dispensable hematopoietic tissues or overexpressed shared antigens. Here, we established that abnormal self-antigens can serve as targets for tumor rejection. We developed a CAR that recognized cancer-associated Tn glycoform of MUC1, a neoantigen expressed in a variety of cancers. Anti-Tn-MUC1 CAR T cells demonstrated target-specific cytotoxicity and successfully controlled tumor growth in xenograft models of T cell leukemia and pancreatic cancer. These findings demonstrate the therapeutic efficacy of CAR T cells directed against Tn-MUC1 and present aberrantly glycosylated antigens as a novel class of targets for tumor therapy with engineered T cells.


Assuntos
Adenocarcinoma/terapia , Epitopos de Linfócito T/imunologia , Imunoterapia/métodos , Mucina-1/imunologia , Linfócitos T/fisiologia , Adenocarcinoma/imunologia , Animais , Linhagem Celular Tumoral , Citotoxicidade Imunológica , Engenharia Genética , Glicosilação , Humanos , Células Jurkat , Camundongos , Camundongos Endogâmicos , Mucina-1/química , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Clin Cancer Res ; 22(11): 2734-43, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-26667491

RESUMO

PURPOSE: Cancers usually contain multiple unique tumor-specific antigens produced by single amino acid substitutions (AAS) and encoded by somatic nonsynonymous single nucleotide substitutions. We determined whether adoptively transferred T cells can reject large, well-established solid tumors when engineered to express a single type of T-cell receptor (TCR) that is specific for a single AAS. EXPERIMENTAL DESIGN: By exome and RNA sequencing of an UV-induced tumor, we identified an AAS in p68 (mp68), a co-activator of p53. This AAS seemed to be an ideal tumor-specific neoepitope because it is encoded by a trunk mutation in the primary autochthonous cancer and binds with highest affinity to the MHC. A high-avidity mp68-specific TCR was used to genetically engineer T cells as well as to generate TCR-transgenic mice for adoptive therapy. RESULTS: When the neoepitope was expressed at high levels and by all cancer cells, their direct recognition sufficed to destroy intratumor vessels and eradicate large, long-established solid tumors. When the neoepitope was targeted as autochthonous antigen, T cells caused cancer regression followed by escape of antigen-negative variants. Escape could be thwarted by expressing the antigen at increased levels in all cancer cells or by combining T-cell therapy with local irradiation. Therapeutic efficacies of TCR-transduced and TCR-transgenic T cells were similar. CONCLUSIONS: Gene therapy with a single TCR targeting a single AAS can eradicate large established cancer, but a uniform expression and/or sufficient levels of the targeted neoepitope or additional therapy are required to overcome tumor escape. Clin Cancer Res; 22(11); 2734-43. ©2015 AACRSee related commentary by Liu, p. 2602.


Assuntos
Imunoterapia Adotiva , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/genética , eIF-2 Quinase/genética , Animais , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/metabolismo , Efeito Espectador , Linhagem Celular Tumoral , Apresentação Cruzada , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/metabolismo , Terapia Genética , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neoplasias/genética , Neoplasias/imunologia , Mutação Puntual , Evasão Tumoral , eIF-2 Quinase/imunologia , eIF-2 Quinase/metabolismo
10.
Sci Transl Med ; 7(275): 275ra22, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25696001

RESUMO

Chimeric antigen receptors (CARs) are synthetic molecules designed to redirect T cells to specific antigens. CAR-modified T cells can mediate long-term durable remissions in B cell malignancies, but expanding this platform to solid tumors requires the discovery of surface targets with limited expression in normal tissues. The variant III mutation of the epidermal growth factor receptor (EGFRvIII) results from an in-frame deletion of a portion of the extracellular domain, creating a neoepitope. We chose a vector backbone encoding a second-generation CAR based on efficacy of a murine scFv-based CAR in a xenograft model of glioblastoma. Next, we generated a panel of humanized scFvs and tested their specificity and function as soluble proteins and in the form of CAR-transduced T cells; a low-affinity scFv was selected on the basis of its specificity for EGFRvIII over wild-type EGFR. The lead candidate scFv was tested in vitro for its ability to direct CAR-transduced T cells to specifically lyse, proliferate, and secrete cytokines in response to antigen-bearing targets. We further evaluated the specificity of the lead CAR candidate in vitro against EGFR-expressing keratinocytes and in vivo in a model of mice grafted with normal human skin. EGFRvIII-directed CAR T cells were also able to control tumor growth in xenogeneic subcutaneous and orthotopic models of human EGFRvIII(+) glioblastoma. On the basis of these results, we have designed a phase 1 clinical study of CAR T cells transduced with humanized scFv directed to EGFRvIII in patients with either residual or recurrent glioblastoma (NCT02209376).


Assuntos
Neoplasias Encefálicas/terapia , Receptores ErbB/imunologia , Glioblastoma/terapia , Imunoterapia , Receptores de Antígenos de Linfócitos T/imunologia , Animais , Modelos Animais de Doenças , Xenoenxertos , Humanos , Camundongos
11.
Proc Natl Acad Sci U S A ; 110(20): 8158-63, 2013 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-23637340

RESUMO

A major challenge of cancer immunotherapy is the persistence and outgrowth of subpopulations that lose expression of the target antigen. IL-15 is a potent cytokine that can promote organ-specific autoimmunity when up-regulated on tissue cells. Here we report that T cells eradicated 2-wk-old solid tumors that expressed IL-15, eliminating antigen-negative cells. In contrast, control tumors that lacked IL-15 expression consistently relapsed. Interestingly, even tumors lacking expression of cognate antigen were rejected when expressing IL-15, indicating that rejection after adoptive T-cell transfer was independent of cognate antigen expression. Nevertheless, the T-cell receptor of the transferred T cells influenced the outcome, consistent with the notion that T-cell receptor activation and effector status determine whether IL-15 can confer lymphokine killer activity-like properties to T cells. The effect was limited to the microenvironment of tumors expressing IL-15; there were no noticeable effects on contralateral tumors lacking IL-15. Taken together, these results indicate that expression of IL-15 in the tumor microenvironment may prevent the escape of antigen loss variants and subsequent tumor recurrence by enabling T cells to eliminate cancer cells lacking cognate antigen expression in a locally restricted manner.


Assuntos
Regulação Neoplásica da Expressão Gênica , Interleucina-15/metabolismo , Neoplasias/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Microambiente Tumoral , Animais , Antígenos de Neoplasias/metabolismo , Autoimunidade , Linfócitos T CD8-Positivos/citologia , Linhagem Celular Tumoral , Proteínas de Fluorescência Verde/metabolismo , Humanos , Interleucina-15/genética , Células Matadoras Naturais/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Perforina/metabolismo , Baço/citologia , Células Estromais/citologia
12.
Cancer Cell ; 23(4): 516-26, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23597565

RESUMO

Cancers often relapse after adoptive therapy, even though specific T cells kill cells from the same cancer efficiently in vitro. We found that tumor eradication by T cells required high affinities of the targeted peptides for major histocompatibility complex (MHC) class I. Affinities of at least 10 nM were required for relapse-free regression. Only high-affinity peptide-MHC interactions led to efficient cross-presentation of antigen, thereby stimulating cognate T cells to secrete cytokines. These findings highlight the importance of targeting peptides with high affinity for MHC class I when designing T cell-based immunotherapy.


Assuntos
Antígeno HLA-A2/imunologia , Antígenos HLA-D/imunologia , Imunoterapia Adotiva/métodos , Neoplasias/imunologia , Neoplasias/terapia , Animais , Linhagem Celular Tumoral , Apresentação Cruzada , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Oligopeptídeos/imunologia , Recidiva , Linfócitos T/imunologia , Resultado do Tratamento
13.
Cancer Immunol Immunother ; 62(2): 359-69, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22926060

RESUMO

Clinical studies with immunotherapies for cancer, including adoptive cell transfers of T cells, have shown promising results. It is now widely believed that recruitment of CD4(+) helper T cells to the tumor would be favorable, as CD4(+) cells play a pivotal role in cytokine secretion as well as promoting the survival, proliferation, and effector functions of tumor-specific CD8(+) cytotoxic T lymphocytes. Genetically engineered high-affinity T-cell receptors (TCRs) can be introduced into CD4(+) helper T cells to redirect them to recognize MHC-class I-restricted antigens, but it is not clear what affinity of the TCR will be optimal in this approach. Here, we show that CD4(+) T cells expressing a high-affinity TCR (nanomolar K (d) value) against a class I tumor antigen mediated more effective tumor treatment than the wild-type affinity TCR (micromolar K (d) value). High-affinity TCRs in CD4(+) cells resulted in enhanced survival and long-term persistence of effector memory T cells in a melanoma tumor model. The results suggest that TCRs with nanomolar affinity could be advantageous for tumor targeting when expressed in CD4(+) T cells.


Assuntos
Antígenos de Neoplasias/imunologia , Linfócitos T CD4-Positivos/imunologia , Genes MHC Classe I/imunologia , Melanoma Experimental/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Neoplasias Cutâneas/imunologia , Transferência Adotiva , Animais , Antineoplásicos/uso terapêutico , Linfócitos T CD4-Positivos/química , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Sobrevivência Celular/imunologia , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Interferon gama/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Antígenos de Linfócitos T/biossíntese , Receptores de Antígenos de Linfócitos T/química , Receptores de Antígenos de Linfócitos T/genética
14.
Cancer Immunol Res ; 1(2): 123-33, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24455752

RESUMO

Immunogenic tumors grow progressively even when heavily infiltrated by CD8(+) T cells. We investigated how to rescue CD8(+) T cell function in long-established immunogenic melanomas that contained a high percentage of endogenous PD-1(+) tumor-specific CD8(+) T cells that were dysfunctional. Treatment with αPD-L1 and αCTLA-4 blocking antibodies did not prevent tumors from progressing rapidly. We then tested exogenous tumor-specific antigen delivery into tumors using Salmonella Typhimurium A1-R to increase antigen levels and generate a proinflammatory tumor microenvironment. Antigen-producing A1-R rescued the endogenous tumor-specific CD8(+) T cell response: proliferation was induced in the lymphoid organs and effector function was recovered in the tumor. Treatment with antigen-producing A1-R led to improved mouse survival and resulted in 32% rejection of long-established immunogenic melanomas. Following treatment with antigen-producing A1-R, the majority of tumor-specific CD8(+) T cells still expressed a high level of PD-1 in the tumor. Combining antigen-producing A1-R with αPD-L1 blocking antibody enhanced the expansion of tumor-specific CD8(+) T cells and resulted in 80% tumor rejection. Collectively, these data demonstrate a powerful new therapeutic approach to rescue dysfunctional endogenous tumor-specific CD8(+) T cells and eradicate advanced immunogenic tumors.


Assuntos
Antígenos de Neoplasias/imunologia , Vacinas Bacterianas/imunologia , Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/imunologia , Melanoma Experimental/imunologia , Melanoma Experimental/terapia , Receptor de Morte Celular Programada 1/imunologia , Animais , Apresentação de Antígeno , Antígenos de Neoplasias/genética , Vacinas Bacterianas/genética , Vacinas Bacterianas/farmacologia , Vacinas Anticâncer/genética , Vacinas Anticâncer/farmacologia , Epitopos , Feminino , Ativação Linfocitária , Linfócitos do Interstício Tumoral/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Ovalbumina/imunologia , Ovalbumina/farmacologia , Fragmentos de Peptídeos/imunologia , Fragmentos de Peptídeos/farmacologia , Receptor de Morte Celular Programada 1/genética
15.
Oncoimmunology ; 2(11): e26677, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24482750

RESUMO

A fluorescence-based, high-resolution imaging approach was used to visualize longitudinally the cellular events unfolding during T cell-mediated tumor destruction. The dynamic interplay of T cells, cancer cells, cancer antigen loss variants, and stromal cells-all color-coded in vivo-was analyzed in established, solid tumors that had developed behind windows implanted on the backs of mice. Events could be followed repeatedly within precisely the same tumor region-before, during and after adoptive T cell therapy-thereby enabling for the first time a longitudinal in vivo evaluation of protracted events, an analysis not possible with terminal imaging of surgically exposed tumors. T cell infiltration, stromal interactions, and vessel destruction, as well as the functional consequences thereof, including the elimination of cancer cells and cancer cell variants were studied. Minimal perivascular T cell infiltrates initiated vascular destruction inside the tumor mass eventually leading to macroscopic central tumor necrosis. Prolonged engagement of T cells with tumor antigen-crosspresenting stromal cells correlated with high IFNγ cytokine release and bystander elimination of antigen-negative cancer cells. The high-resolution, longitudinal, in vivo imaging approach described here will help to further a better mechanistic understanding of tumor eradication by T cells and other anti-cancer therapies.

16.
Clin Cancer Res ; 18(9): 2526-33, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22415314

RESUMO

PURPOSE: Solid tumors that have grown two weeks or longer in mice and have diameters larger than 1 cm are histologically indistinguishable from autochthonous human cancers. When experimental tumors reach this clinically relevant size, they are usually refractory to most immunotherapies but may be destroyed by adoptive T-cell transfer. However, TCR-transgenic T cells and/or tumor cells overexpressing antigens are frequently used in these experiments. Here we studied the requirements for destroying clinical size, unmanipulated 8101 tumors by adoptive cell therapy. EXPERIMENTAL DESIGN: 8101 arose in an old mouse after chronic exposure to UV light. A cancer line was established, which was never serially transplanted. The immunodominant CD8(+) T cell-recognized antigen of this tumor is caused by a somatic tumor-specific mutation in the RNA helicase p68. 8101 tumors were treated with spleen cells from young naive, or young and old immunized mice to ascertain the characteristics of immune cells that lead to rejection. RESULTS: Here we show that the mutant p68 peptide has an exceptionally high affinity to the presenting MHC class I molecule K(b) and that spleen cells from immunized young syngeneic mice adoptively transferred to Rag(-/-) or cancer-suppressed euthymic mice eradicate 8101 tumors larger than 1 cm in average diameter and established for several weeks. Spleen cells from naive young mice or from old and boosted (reimmunized) mice were ineffective. CONCLUSIONS: Relapse-free destruction of large and long-established tumors expressing a genuine very high-affinity tumor-specific antigen can be achieved by using adoptive transfer of lymphocytes from immunized young individuals.


Assuntos
Memória Imunológica , Imunoterapia Adotiva , Neoplasias Experimentais/etiologia , Neoplasias Experimentais/prevenção & controle , Baço/imunologia , Linfócitos T Citotóxicos/imunologia , Linfócitos T/imunologia , Animais , DNA de Neoplasias/genética , Citometria de Fluxo , Humanos , Imunização , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neoplasias Experimentais/patologia , Reação em Cadeia da Polimerase
17.
Cancer Res ; 72(8): 1964-74, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22374983

RESUMO

Natural killer (NK) cells inhibit early stages of tumor formation, recurrence, and metastasis. Here, we show that NK cells can also eradicate large solid tumors. Eradication depended on the massive infiltration of proliferating NK cells due to interleukin 15 (IL-15) released and presented by the cancer cells in the tumor microenvironment. Infiltrating NK cells had the striking morphologic feature of being densely loaded with periodic acid-Schiff-positive, diastase-resistant granules, resembling uterine NK cells. Perforin-mediated killing by these densely granulated NK cells was essential for tumor eradication. Expression of the IL-15 receptor α on cancer cells was needed to efficiently induce granulated NK cells, and expression on host stromal cells was essential to prevent tumor relapse after near complete destruction. These results indicate that IL-15 released at the cancer site induces highly activated NK cells that lead to eradication of large solid tumors.


Assuntos
Interleucina-15/imunologia , Células Matadoras Naturais/imunologia , Ativação Linfocitária/imunologia , Neoplasias Experimentais/imunologia , Microambiente Tumoral/imunologia , Animais , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Imuno-Histoquímica , Corpos de Inclusão , Interleucina-15/metabolismo , Células Matadoras Naturais/metabolismo , Camundongos , Camundongos Knockout , Neoplasias Experimentais/metabolismo
18.
Semin Cancer Biol ; 22(1): 41-9, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22212863

RESUMO

All cancers depend on stroma for support of growth. Leukemias, solid tumors, cancer cells causing effusions, metastases as well as micro-disseminated cancer cells release factors that stimulate stromal cells, which in turn produce ligands that stimulate cancer cells. Therefore, elimination of stromal support by destroying the stromal cells or by inhibiting feedback stimulation of cancer growth is in the focus of many evolving therapies. A stringent evaluation of the efficacy of stromal targeting requires testing in animal models. Most current studies emphasize the successes of stromal targeting rather than deciphering its limitations. Here we show that many of the stromal targeting approaches, while often reducing tumor growth rates, are rarely curative. Therefore, we will also discuss conditions where stromal targeting can eradicate large established tumors. Finally, we will examine still unanswered questions of this promising and exciting area of cancer research.


Assuntos
Neoplasias/terapia , Comunicação Parácrina/fisiologia , Células Estromais/fisiologia , Progressão da Doença , Humanos , Neoplasias/fisiopatologia
19.
Mol Ther ; 20(3): 652-60, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22233579

RESUMO

Most T cells have T cell receptors (TCR) of micromolar affinity for peptide-major histocompatibility complex (MHC) ligands, but genetic engineering can generate TCRs of nanomolar affinity. The affinity of the TCR used, m33, for its cognate non-self peptide-MHC-I complex (SIYRYYGL-K(b)) is 1,000-fold higher than of the wild-type TCR 2C. The affinity of m33 for the self-peptide dEV-8 on K(b) is only twofold higher. Mouse CD8(+) T cells transduced with an m33-encoding retrovirus showed binding of SIY-K(b) and potent function in vitro, but in vivo these T cells disappeared within hours after transfer into syngeneic hosts without causing graft-versus-host disease (GVHD). Accordingly, in cases where such CD8-dependent self-reactivity might occur in human adoptive T cell therapies, our results show that a peripheral T-cell deletion mechanism could operate to avoid reactions with the host. In contrast to CD8(+) T cells, we show that CD4(+) T cells expressing m33 survived for months in vivo. Furthermore, the m33-transduced CD4(+) T cells were able to mediate antigen-specific rejection of 6-day-old tumors. Together, we show that CD8(+) T cell expressing a MHC class I-restricted high-affinity TCR were rapidly deleted whereas CD4(+) T cells expressing the same TCR survived and provided function while being directed against a class I-restricted antigen.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Sequência de Aminoácidos , Animais , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular , Sobrevivência Celular/imunologia , Expressão Gênica , Vetores Genéticos/genética , Imunoterapia Adotiva , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/terapia , Oligopeptídeos/imunologia , Peptídeos/química , Peptídeos/imunologia , Retroviridae/genética , Transdução Genética
20.
Clin Cancer Res ; 16(8): 2333-43, 2010 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20371691

RESUMO

PURPOSE: Adoptive therapy with genetically engineered T cells carrying redirected antigen specificity is a new option for the treatment of cancer. This approach is not yet available for metastatic renal cell carcinoma (RCC), due to the scarcity of therapeutically useful reagents. We analyzed tumor-infiltrating lymphocytes (TIL) from RCC to identify T-cell specificities with shared tumor-specific recognition to develop T-cell receptor (TCR)-engineered T lymphocytes for adoptive therapy of RCC. EXPERIMENTAL DESIGN: We established a T-cell clone from TIL that recognized a human leukocyte antigen (HLA)-A2-restricted tumor antigen. The TCR alpha- and beta-chain genes were isolated, modified by codon optimization and murinization, and retrovirally transduced into peripheral blood lymphocytes (PBL). A TCR-expressing indicator line (B3Z-TCR53) was established to screen for antigen prevalence in RCC, other malignancies, and normal cell counterparts. RESULTS: TCR53-engineered PBL recapitulated the specificity of the TIL and showed tumor-specific HLA-A2-restricted effector activities (IFN-gamma, tumor necrosis factor-alpha, interleukin-2, macrophage inflammatory protein-1beta, cytotoxicity). PBL-TCR53 of healthy donors and RCC patients exhibited similar transduction efficiency, expansion, and polyfunctional profile. Using B3Z-TCR53 cells, 130 tumor and normal cells were screened and shared TCR53 peptide: MHC expression was found in >60% of RCC and 25% of tumor lines of other histology, whereas normal tissue cells were not recognized. CONCLUSIONS: To date, TCR53 is the only TCR with shared HLA-A2-restricted recognition of RCC. It fulfills the criteria for utilization in TCR gene therapy and advances T cell-based immunotherapy to patients with RCC and other malignancies expressing the TCR ligand.


Assuntos
Carcinoma de Células Renais/terapia , Imunoterapia Adotiva , Neoplasias Renais/terapia , Linfócitos do Interstício Tumoral/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Linfócitos T/transplante , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/imunologia , Células Cultivadas , Citotoxicidade Imunológica/imunologia , Citometria de Fluxo , Antígeno HLA-A2/genética , Antígeno HLA-A2/imunologia , Humanos , Rim/citologia , Rim/metabolismo , Neoplasias Renais/genética , Neoplasias Renais/imunologia , Especificidade do Receptor de Antígeno de Linfócitos T , Linfócitos T/imunologia , Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...