Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 18(6): 1800-10, 2012 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-22223548

RESUMO

New routes for the preparation of highly active TiO(2)-supported Cu and CuZn catalysts have been developed for C-O coupling reactions. Slurries of a titania precursor were dip-coated onto glass beads to obtain either structured mesoporous or non-porous titania thin films. The Cu and CuZn nanoparticles, synthesized using a reduction by solvent method, were deposited onto calcined films to obtain a Cu loading of 2 wt%. The catalysts were characterized by inductively coupled plasma (ICP) spectroscopy, temperature-programmed oxidation/reduction (TPO/TPR) techniques, (63)Cu nuclear magnetic resonance (NMR) spectroscopy, X-ray diffraction (XRD), scanning and transmission electron microscopy (S/TEM-EDX) and X-ray photo-electron spectroscopy (XPS). The activity and stability of the catalysts obtained have been studied in the C-O Ullmann coupling of 4-chloropyridine and potassium phenolate. The titania-supported nanoparticles retained catalyst activity for up to 12 h. However, catalyst deactivation was observed for longer operation times due to oxidation of the Cu nanoparticles. The oxidation rate could be significantly reduced over the CuZn/TiO(2) catalytic films due to the presence of Zn. The 4-phenoxypyridine yield was 64% on the Cu/nonporous TiO(2) at 120 °C. The highest product yield of 84% was obtained on the Cu/mesoporous TiO(2) at 140 °C, corresponding to an initial reaction rate of 104 mmol g(cat) (-1) s(-1). The activation energy on the Cu/mesoporous TiO(2) catalyst was found to be (144±5) kJ mol(-1), which is close to the value obtained for the reaction over unsupported CuZn nanoparticles (123±3 kJ mol(-1)) and almost twice the value observed over the catalysts deposited onto the non-porous TiO(2) support (75±2 kJ mol(-1)).

2.
Nanotechnology ; 22(20): 205701, 2011 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-21444957

RESUMO

This paper reports an in-depth structural investigation of PdZn nanoparticulates prepared over an entire compositional range. By using a combination of HRTEM, ICP-OES, EDX and XPS alongside PXRD, we are able to show how a liquid-type reduction process can be exploited to target different PdZn bimetallic structures while maintaining reproducibly narrow particle size distributions and average particle diameters of approximately 3 nm. Samples have been further analyzed by quantitative phase analysis of the Rietveld refined diffraction data, providing indications as to how variations in specific surface compositions are obtained when Zn is used as the alloying metal. The influence of nanolattice strain is investigated by geometric analysis of TEM data. Results suggest, in conjunction with previously published catalytic data, how different compositions of this specific bimetallic system may be exploited in catalytic processes to control substrate/product affinity. We thus demonstrate a new and simplified approach to PdZn bimetallics, which may offer novel perspectives for applications in industrial catalysis.

3.
Nanoscale Res Lett ; 5(5): 904-7, 2010 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-20672032

RESUMO

ZnO nanowires have been grown by chemical vapour deposition (CVD) using PdZn bimetallic nanoparticles to catalyse the process. Nanocatalyst particles with mean particle diameters of 2.6 ± 0.3 nm were shown to catalyse the growth process, displaying activities that compare well with those reported for sputtered systems. Since nanowire diameters are linked to catalyst morphology, the size-control we are able to exhibit during particle preparation represents an advantage over existing approaches in terms of controlling nanowire dimensions, which is necessary in order to utilize the nanowires for catalytic or electrical applications.(See supplementary material 1).

4.
Dalton Trans ; 39(28): 6496-502, 2010 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-20567754

RESUMO

A modified polyol-based reduction method in ethylene glycol that incorporates poly(N-vinylpyrrolidone) (PVP, M(av) = 10,000; 40,000; 55,000) as polymeric anti-agglomerant alongside a reducing additive (N(2)H(4) x H(2)O, NaBH(4), NaH(2)PO(2) x H(2)O) has been employed to investigate the influence of synthetic parameters on the purity, morphology and stability of an array of polymer-coated copper nanoparticles. While data point to ethylene glycol being capable of acting as a reductant in this system, the use of NaH(2)PO(2) x H(2)O as co-reductant in tandem with the presence of PVP (M(av) 40,000) has rendered nanoparticles with a mean size distribution of 9.6 +/- 1.0 nm that exhibit stability towards oxidation for several months. These data allow us to probe fundamentally how oxidatively stable nano-copper might be achieved.


Assuntos
Cobre/química , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Oxirredução , Tamanho da Partícula , Fosfatos/química , Polietilenoglicóis/química , Pirrolidinonas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...