Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 3097, 2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35654776

RESUMO

Structural hierarchy is found in myriad biological systems and has improved man-made structures ranging from the Eiffel tower to optical cavities. In mechanical resonators whose rigidity is provided by static tension, structural hierarchy can reduce the dissipation of the fundamental mode to ultralow levels due to an unconventional form of soft clamping. Here, we apply hierarchical design to silicon nitride nanomechanical resonators and realize binary tree-shaped resonators with room temperature quality factors as high as 7.8 × 108 at 107 kHz frequency (1.1 × 109 at T = 6 K). The resonators' thermal-noise-limited force sensitivities reach 740 zN/Hz1/2 at room temperature and 90 zN/Hz1/2 at 6 K, surpassing state-of-the-art cantilevers currently used for force microscopy. Moreover, we demonstrate hierarchically structured, ultralow dissipation membranes suitable for interferometric position measurements in Fabry-Pérot cavities. Hierarchical nanomechanical resonators open new avenues in force sensing, signal transduction and quantum optomechanics, where low dissipation is paramount and operation with the fundamental mode is often advantageous.

2.
Phys Rev Lett ; 124(2): 025502, 2020 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-32004050

RESUMO

Self-similar structures occur naturally and have been employed to engineer exotic physical properties. We show that acoustic modes of a fractal-like system of tensioned strings can display increased mechanical quality factors due to the enhancement of dissipation dilution. We describe a realistic resonator design in which the quality factor of the fundamental mode is enhanced by as much as 2 orders of magnitude compared to a simple string with the same size and tension. Our findings can open new avenues in force sensing, cavity quantum optomechanics, and experiments with suspended test masses.

3.
Science ; 360(6390): 764-768, 2018 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-29650701

RESUMO

Extreme stresses can be produced in nanoscale structures; this feature has been used to realize enhanced materials properties, such as the high mobility of silicon in modern transistors. We show how nanoscale stress can be used to realize exceptionally low mechanical dissipation when combined with "soft-clamping"-a form of phononic engineering. Specifically, using a nonuniform phononic crystal pattern, we colocalize the strain and flexural motion of a free-standing silicon nitride nanobeam. Ringdown measurements at room temperature reveal string-like vibrational modes with quality (Q) factors as high as 800 million and Q × frequency exceeding 1015 hertz. These results illustrate a promising route for engineering ultracoherent nanomechanical devices.

4.
Science ; 352(6293): 1552-5, 2016 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-27339982

RESUMO

Quantum metrology exploits entangled states of particles to improve sensing precision beyond the limit achievable with uncorrelated particles. All previous methods required detection noise levels below this standard quantum limit to realize the benefits of the intrinsic sensitivity provided by these states. We experimentally demonstrate a widely applicable method for entanglement-enhanced measurements without low-noise detection. The method involves an intermediate quantum phase magnification step that eases implementation complexity. We used it to perform squeezed-state metrology 8 decibels below the standard quantum limit with a detection system that has a noise floor 10 decibels above the standard quantum limit.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...