Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Reconstr Microsurg ; 38(9): 694-702, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35292952

RESUMO

BACKGROUND: Nerve wrapping has been advocated to minimize scarring and adhesion following neurorrhaphy or neurolysis. A wrap should provide an enclosure that is snug enough to protect and support the affected nerve without strangulating the nerve. The degree to which resorbable wraps should be ": tightened" around the nerve is largely subjective with scant literature on the subject. The purpose of this study was to evaluate the effects of tightly fitting resorbable nerve wraps around intact rat sciatic nerves. METHODS: Twenty-four Sprague-Dawley rats underwent exposure and circumferential measurement of the right sciatic nerve. Porcine-derived extracellular matrix (ECM) wraps were trimmed and sutured to enclose the nerve with a tight (same as that of the nerve, n = 8) or loose (2.5x that of the nerve, n = 8) circumference. Sham-surgery control animals (n = 8) had no wrap treatment. Functional outcome was recorded biweekly by sciatic functional index (SFI) with walking track analysis and electrical stimulation. Animals were sacrificed at 12 weeks for histologic analyses. RESULTS: No withdrawal response could be evoked in the tight-wrap group until week 9, while significant improvement in SFI first occurred between weeks 5 and 7. By week 12, the tight-wrap group required 60% more current compared with baseline stimulation to produce a withdrawal response. They recovered 81% of SFI baseline values but also demonstrated significantly greater intraneural collagen content (p < 0.001) and lower axon density (p < 0.05) than in the loose-wrap and sham groups. The loose-wrap group had comparable functional and histologic outcomes to the sham control group. CONCLUSION: Resorbable ECM nerve wraps applied tightly around intact rat sciatic nerves caused significant functional impairment and histological changes characteristic of acute nerve compression. Significant but incomplete functional recovery was achieved by the tight-wrap group after 12 weeks, but such recovery may not apply in humans.


Assuntos
Traumatismos dos Nervos Periféricos , Nervo Isquiático , Humanos , Ratos , Suínos , Animais , Ratos Sprague-Dawley , Nervo Isquiático/cirurgia , Nervo Isquiático/patologia , Traumatismos dos Nervos Periféricos/patologia , Axônios/patologia , Recuperação de Função Fisiológica/fisiologia , Regeneração Nervosa/fisiologia
2.
Tissue Eng Part A ; 26(9-10): 503-511, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31884890

RESUMO

Painful neuroma formation is a common and debilitating sequela of traumatic or oncologic nerve amputations. Studies suggest that isolating transected nerve stumps within protective caps during amputation surgery or revision procedures may assist in preventing symptomatic nerve-end neuroma formation. This study evaluated the local effects of two porcine small intestine submucosa (pSIS) nerve caps of differing configurations on a terminal nerve end in an animal model. The tibial nerves of 57 Sprague Dawley rats were transected and transposed to the lateral hind leg. The nerves were treated with one of three SIS materials, including (i) a nerve cap with spiraling chambering, termed spiral nerve cap (SNC), (ii) a nerve cap with bifurcated chambers termed chambered nerve cap (CNC), or (iii) an open tube. The surgical control consisted of nerve stumps that were not treated. Overall tissue response, axonal swirling, optical density of axons, and behavioral pain response were quantified at 8 and 12 weeks postoperatively. There were no notable differences between the performance of the SNC and CNC groups. The pSIS nerve caps mitigated aberrant axonal regeneration and decreased neuroma formation and associated pain response. These findings suggest that nerve caps with internal chambers for axonal outgrowth may improve axonal alignment, therefore reducing the likelihood of symptomatic neuroma formation. Impact statement This study provides evidence for using nerve caps with internal structure on nerve stumps after amputation surgeries to reduce or prevent symptomatic neuromas. This study showed that porcine small intestine submucosa had a favorable remodeling profile and tissue response, illustrating that this device can be used to (i) minimize soft tissue attachments around the nerves that are capped, (ii) align axonal outgrowth to guide nerve regeneration away from aberrant neuroma formation, and (iii) act as a barrier between the nerve and external stimuli ultimately remodeling into a new soft tissue layer around the nerve stump thus decreasing symptomatic neuroma formation.


Assuntos
Intestino Delgado/citologia , Regeneração Nervosa/fisiologia , Neuroma/prevenção & controle , Animais , Axônios/metabolismo , Modelos Animais de Doenças , Masculino , Ratos , Ratos Sprague-Dawley , Suínos
3.
Biomed Res Int ; 2014: 356415, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25243135

RESUMO

OBJECTIVES: To study possible nerve regeneration of a damaged auditory nerve by the use of stem cell transplantation. METHODS: We transplanted HNPCs to the rat AN trunk by the internal auditory meatus (IAM). Furthermore, we studied if addition of BDNF affects survival and phenotypic differentiation of the grafted HNPCs. A bioactive nanofiber gel (PA gel), in selected groups mixed with BDNF, was applied close to the implanted cells. Before transplantation, all rats had been deafened by a round window niche application of ß-bungarotoxin. This neurotoxin causes a selective toxic destruction of the AN while keeping the hair cells intact. RESULTS: Overall, HNPCs survived well for up to six weeks in all groups. However, transplants receiving the BDNF-containing PA gel demonstrated significantly higher numbers of HNPCs and neuronal differentiation. At six weeks, a majority of the HNPCs had migrated into the brain stem and differentiated. Differentiated human cells as well as neurites were observed in the vicinity of the cochlear nucleus. CONCLUSION: Our results indicate that human neural precursor cells (HNPC) integration with host tissue benefits from additional brain derived neurotrophic factor (BDNF) treatment and that these cells appear to be good candidates for further regenerative studies on the auditory nerve (AN).


Assuntos
Fator Neurotrófico Derivado do Encéfalo/farmacologia , Diferenciação Celular/efeitos dos fármacos , Nervo Coclear/patologia , Nanofibras/química , Células-Tronco Neurais/citologia , Neurônios/citologia , Neurônios/patologia , Transplante de Células-Tronco , Animais , Contagem de Células , Sobrevivência Celular/efeitos dos fármacos , Nervo Coclear/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Géis/química , Proteínas de Fluorescência Verde/metabolismo , Humanos , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos Sprague-Dawley
4.
Mol Ther ; 20(3): 544-54, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22008908

RESUMO

Neurotrophic factors are integrally involved in the development of the nigrostriatal system and in combination with gene therapy, possess great therapeutic potential for Parkinson's disease (PD). Pleiotrophin (PTN) is involved in the development, maintenance, and repair of the nigrostriatal dopamine (DA) system. The present study examined the ability of striatal PTN overexpression, delivered via psueudotyped recombinant adeno-associated virus type 2/1 (rAAV2/1), to provide neuroprotection and functional restoration from 6-hydroxydopamine (6-OHDA). Striatal PTN overexpression led to significant neuroprotection of tyrosine hydroxylase immunoreactive (THir) neurons in the substantia nigra pars compacta (SNpc) and THir neurite density in the striatum, with long-term PTN overexpression producing recovery from 6-OHDA-induced deficits in contralateral forelimb use. Transduced striatal PTN levels were increased threefold compared to adult striatal PTN expression and approximated peak endogenous developmental levels (P1). rAAV2/1 vector exclusively transduced neurons within the striatum and SNpc with approximately half the total striatal volume routinely transduced using our injection parameters. Our results indicate that striatal PTN overexpression can provide neuroprotection for the 6-OHDA lesioned nigrostriatal system based upon morphological and functional measures and that striatal PTN levels similar in magnitude to those expressed in the striatum during development are sufficient to provide neuroprotection from Parkinsonian insult.


Assuntos
Proteínas de Transporte/genética , Corpo Estriado/metabolismo , Citocinas/genética , Transtornos Parkinsonianos/terapia , Animais , Proteínas de Transporte/metabolismo , Citocinas/metabolismo , Dependovirus/genética , Modelos Animais de Doenças , Expressão Gênica , Ordem dos Genes , Terapia Genética , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Masculino , Oxidopamina , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/genética , Transporte Proteico , Ratos , Ratos Sprague-Dawley , Transdução Genética
5.
J Parkinsons Dis ; 1(1): 123-36, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22328911

RESUMO

The mechanisms underlying the effects of long-term deep brain stimulation of the subthalamic nucleus (STN DBS) as a therapy for Parkinson's disease (PD) remain poorly understood. The present study examined whether functionally effective, long-term STN DBS modulates glial cell line-derived neurotrophic factor (GDNF) and/or brain-derived neurotrophic factor (BDNF) in both unlesioned and unilateral 6-hydroxydopamine lesioned rats. Lesioned rats that received two weeks of continuous unilateral STN DBS exhibited significant improvements in parkinsonian motor behaviors in tests of forelimb akinesia and rearing activity. Unilateral STN DBS did not increase GDNF in the nigrostriatal system, primary motor cortex (M1), or hippocampus of unlesioned rats. In contrast, unilateral STN DBS increased BDNF protein 2-3 fold bilaterally in the nigrostriatal system with the location (substantia nigra vs. striatum) dependent upon lesion status. Further, BDNF protein was bilaterally increased in M1 cortex by as much as 2 fold regardless of lesion status. STN DBS did not impact cortical regions that receive less input from the STN. STN DBS also was associated with bilateral increases in BDNF mRNA in the substantia nigra (SN) and internal globus pallidus (GPi). The increase observed in GPi was completely blocked by pretreatment with 5-Methyl-10,11-dihydro-5 H-dibenzo[a,d]cyclohepten-5,10-imine (MK-801), suggesting that the activation of N-methyl-D-aspartate (NMDA) receptors was involved in this phenomenon. The upregulation of BDNF associated with long term STN DBS suggest that this therapy may exert pronounced and underappreciated effects on plasticity in the basal ganglia circuitry that may play a role in the symptomatic effects of this therapy as well as support the neuroprotective effect of stimulation documented in this rat model.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Corpo Estriado/metabolismo , Estimulação Encefálica Profunda , Córtex Motor/metabolismo , Doença de Parkinson/terapia , Substância Negra/metabolismo , Núcleo Subtalâmico/fisiologia , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Regulação da Expressão Gênica/fisiologia , Masculino , Neurotoxinas/toxicidade , Oxidopamina/toxicidade , Doença de Parkinson/etiologia , Doença de Parkinson/patologia , Desempenho Psicomotor/fisiologia , Ratos , Ratos Sprague-Dawley
6.
J Neurosci ; 27(28): 7541-52, 2007 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-17626215

RESUMO

Aberrantly interconnected granule cells are characteristic of temporal lobe epilepsy. By reducing network stability, these abnormal neurons may contribute directly to disease development. Only subsets of granule cells, however, exhibit abnormalities. Why this is the case is not known. Ongoing neurogenesis in the adult hippocampus may provide an explanation. Newly generated granule cells may be uniquely vulnerable to environmental disruptions relative to their mature neighbors. Here, we determine whether there is a critical period after neuronal birth during which neuronal integration can be disrupted by an epileptogenic insult. By bromodeoxyuridine birthdating cells in green fluorescent protein-expressing transgenic mice, we were able to noninvasively label granule cells born 8 weeks before (mature), 1 week before (immature), or 3 weeks after (newborn) pilocarpine-epileptogenesis. Neuronal morphology was examined 4 and 8 weeks after pilocarpine treatment. Strikingly, almost 50% of immature granule cells exposed to pilocarpine-epileptogenesis exhibited aberrant hilar basal dendrites. In contrast, only 9% of mature granule cells exposed to the identical insult possessed basal dendrites. Moreover, newborn cells were even more severely impacted than immature cells, with 40% exhibiting basal dendrites and an additional 20% exhibiting migration defects. In comparison, <5% of neurons from normal animals exhibited either abnormality, regardless of age. Together, these data demonstrate the existence of a critical period after the birth of adult-generated neurons during which they are vulnerable to being recruited into epileptogenic neuronal circuits. Pathological brain states therefore may pose a significant hurdle for the appropriate integration of newly born endogenous, and exogenous, neurons.


Assuntos
Giro Denteado/patologia , Epilepsia/induzido quimicamente , Epilepsia/patologia , Neurônios/patologia , Pilocarpina , Animais , Axônios/ultraestrutura , Morte Celular , Divisão Celular , Movimento Celular , Senescência Celular , Dendritos/ultraestrutura , Giro Denteado/metabolismo , Giro Denteado/fisiopatologia , Giro Denteado/ultraestrutura , Feminino , Proteínas de Fluorescência Verde/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fibras Musgosas Hipocampais/patologia , Fibras Musgosas Hipocampais/fisiopatologia , Neurônios/metabolismo , Neurônios/ultraestrutura , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/patologia , Estado Epiléptico/fisiopatologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...