Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant J ; 116(6): 1784-1803, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37715981

RESUMO

Tree growth and survival are dependent on their ability to perceive signals, integrate them, and trigger timely and fitted molecular and growth responses. While ectomycorrhizal symbiosis is a predominant tree-microbe interaction in forest ecosystems, little is known about how and to what extent it helps trees cope with environmental changes. We hypothesized that the presence of Laccaria bicolor influences abiotic cue perception by Populus trichocarpa and the ensuing signaling cascade. We submitted ectomycorrhizal or non-ectomycorrhizal P. trichocarpa cuttings to short-term cessation of watering or ozone fumigation to focus on signaling networks before the onset of any physiological damage. Poplar gene expression, metabolite levels, and hormone levels were measured in several organs (roots, leaves, mycorrhizas) and integrated into networks. We discriminated the signal responses modified or maintained by ectomycorrhization. Ectomycorrhizas buffered hormonal changes in response to short-term environmental variations systemically prepared the root system for further fungal colonization and alleviated part of the root abscisic acid (ABA) signaling. The presence of ectomycorrhizas in the roots also modified the leaf multi-omics landscape and ozone responses, most likely through rewiring of the molecular drivers of photosynthesis and the calcium signaling pathway. In conclusion, P. trichocarpa-L. bicolor symbiosis results in a systemic remodeling of the host's signaling networks in response to abiotic changes. In addition, ectomycorrhizal, hormonal, metabolic, and transcriptomic blueprints are maintained in response to abiotic cues, suggesting that ectomycorrhizas are less responsive than non-mycorrhizal roots to abiotic challenges.


Assuntos
Micorrizas , Ozônio , Populus , Micorrizas/fisiologia , Simbiose , Sinais (Psicologia) , Raízes de Plantas/metabolismo , Ecossistema , Populus/genética
2.
New Phytol ; 239(6): 2248-2264, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37488708

RESUMO

Plant establishment requires the formation and development of an extensive root system with architecture modulated by complex genetic networks. Here, we report the identification of the PtrXB38 gene as an expression quantitative trait loci (eQTL) hotspot, mapped using 390 leaf and 444 xylem Populus trichocarpa transcriptomes. Among predicted targets of this trans-eQTL were genes involved in plant hormone responses and root development. Overexpression of PtrXB38 in Populus led to significant increases in callusing and formation of both stem-born roots and base-born adventitious roots. Omics studies revealed that genes and proteins controlling auxin transport and signaling were involved in PtrXB38-mediated adventitious root formation. Protein-protein interaction assays indicated that PtrXB38 interacts with components of endosomal sorting complexes required for transport machinery, implying that PtrXB38-regulated root development may be mediated by regulating endocytosis pathway. Taken together, this work identified a crucial root development regulator and sheds light on the discovery of other plant developmental regulators through combining eQTL mapping and omics approaches.


Assuntos
Populus , Locos de Características Quantitativas , Locos de Características Quantitativas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo
3.
Biotechnol Biofuels Bioprod ; 16(1): 41, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36899393

RESUMO

BACKGROUND: High-throughput metabolomics analytical methodology is needed for population-scale studies of bioenergy-relevant feedstocks such as poplar (Populus sp.). Here, the authors report the relative abundance of extractable aromatic metabolites in Populus trichocarpa leaves rapidly estimated using pyrolysis-molecular beam mass spectrometry (py-MBMS). Poplar leaves were analyzed in conjunction with and validated by GC/MS analysis of extracts to determine key spectral features used to build PLS models to predict the relative composition of extractable aromatic metabolites in whole poplar leaves. RESULTS: The Pearson correlation coefficient for the relative abundance of extractable aromatic metabolites based on ranking between GC/MS analysis and py-MBMS analysis of the Boardman leaf set was 0.86 with R2 = 0.76 using a simplified prediction approach from select ions in MBMS spectra. Metabolites most influential to py-MBMS spectral features in the Clatskanie set included the following compounds: catechol, salicortin, salicyloyl-coumaroyl-glucoside conjugates, α-salicyloylsalicin, tremulacin, as well as other salicylates, trichocarpin, salicylic acid, and various tremuloidin conjugates. Ions in py-MBMS spectra with the highest correlation to the abundance of extractable aromatic metabolites as determined by GC/MS analysis of extracts, included m/z 68, 71, 77, 91, 94, 105, 107, 108, and 122, and were used to develop the simplified prediction approach without PLS models or a priori measurements. CONCLUSIONS: The simplified py-MBMS method is capable of rapidly screening leaf tissue for relative abundance of extractable aromatic secondary metabolites to enable prioritization of samples in large populations requiring comprehensive metabolomics that will ultimately inform plant systems biology models and advance the development of optimized biomass feedstocks for renewable fuels and chemicals.

4.
Metabolites ; 13(2)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36837758

RESUMO

Pseudomonas fluorescens GM16 associates with Populus, a model plant in biofuel production. Populus releases abundant phenolic glycosides such as salicin, but P. fluorescens GM16 cannot utilize salicin, whereas Pseudomonas strains are known to utilize compounds similar to the aglycone moiety of salicin-salicyl alcohol. We propose that the association of Pseudomonas to Populus is mediated by another organism (such as Rahnella aquatilis OV744) that degrades the glucosyl group of salicin. In this study, we demonstrate that in the Rahnella-Pseudomonas salicin co-culture model, Rahnella grows by degrading salicin to glucose 6-phosphate and salicyl alcohol which is secreted out and is subsequently utilized by P. fluorescens GM16 for its growth. Using various quantitative approaches, we elucidate the individual pathways for salicin and salicyl alcohol metabolism present in Rahnella and Pseudomonas, respectively. Furthermore, we were able to establish that the salicyl alcohol cross-feeding interaction between the two strains on salicin medium is carried out through the combination of their respective individual pathways. The research presents one of the potential advantages of salicyl alcohol release by strains such as Rahnella, and how phenolic glycosides could be involved in attracting multiple types of bacteria into the Populus microbiome.

5.
ACS Synth Biol ; 12(2): 405-418, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36700560

RESUMO

Cell-free systems derived from crude cell extracts have developed into tools for gene expression, with applications in prototyping, biosensing, and protein production. Key to the development of these systems is optimization of cell extract preparation methods. However, the applied nature of these optimizations often limits investigation into the complex nature of the extracts themselves, which contain thousands of proteins and reaction networks with hundreds of metabolites. Here, we sought to uncover the black box of proteins and metabolites in Escherichia coli cell-free reactions based on different extract preparation methods. We assess changes in transcription and translation activity from σ70 promoters in extracts prepared with acetate or glutamate buffer and the common post-lysis processing steps of a runoff incubation and dialysis. We then utilize proteomic and metabolomic analyses to uncover potential mechanisms behind these changes in gene expression, highlighting the impact of cold shock-like proteins and the role of buffer composition.


Assuntos
Biossíntese de Proteínas , Proteômica , Escherichia coli/genética , Escherichia coli/metabolismo , Sistema Livre de Células/metabolismo , Extratos Vegetais/metabolismo
6.
Front Plant Sci ; 13: 908649, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36247563

RESUMO

A bifunctional peroxidase enzyme, 4-coumarate 3-hydroxylase (C3H/APX), provides a parallel route to the shikimate shunt pathway for the conversion of 4-coumarate to caffeate in the early steps of lignin biosynthesis. Knockdown of C3H/APX (C3H/APX-KD) expression has been shown to reduce the lignin content in Brachypodium distachyon. However, like many other lignin-modified plants, C3H/APX-KDs show unpredictable pleiotropic phenotypes, including stunted growth, delayed senescence, and reduced seed yield. A system-wide level understanding of altered biological processes in lignin-modified plants can help pinpoint the lignin-modification associated growth defects to benefit future studies aiming to negate the yield penalty. Here, a multi-omic approach was used to characterize molecular changes resulting from C3H/APX-KD associated lignin modification and negative growth phenotype in Brachypodium distachyon. Our findings demonstrate that C3H/APX knockdown in Brachypodium stems substantially alters the abundance of enzymes implicated in the phenylpropanoid biosynthetic pathway and disrupt cellular redox homeostasis. Moreover, it elicits plant defense responses associated with intracellular kinases and phytohormone-based signaling to facilitate growth-defense trade-offs. A deeper understanding along with potential targets to mitigate the pleiotropic phenotypes identified in this study could aid to increase the economic feasibility of lignocellulosic biofuel production.

7.
mSystems ; 7(4): e0012022, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35862808

RESUMO

Pathogenic fungal infections in plants may, in some cases, lead to downstream systematic impacts on the plant metabolome and microbiome that may either alleviate or exacerbate the effects of the fungal pathogen. While Sphaerulina musiva is a well-characterized fungal pathogen which infects Populus tree species, an important wood fiber and biofuel feedstock, little is known about its systematic effects on the metabolome and microbiome of Populus. Here, we investigated the metabolome of Populus trichocarpa and Populus deltoides leaves and roots and the microbiome of the leaf and root endospheres, phylloplane, and rhizosphere to understand the systematic impacts of S. musiva abundance and infection on Populus species in a common garden field setting. We found that S. musiva is indeed present in both P. deltoides and P. trichocarpa, but S. musiva abundance was not statistically related to stem canker onset. We also found that the leaf and root metabolomes significantly differ between the two Populus species and that certain leaf metabolites, particularly the phenolic glycosides salirepin and salireposide, are diminished in canker-infected P. trichocarpa trees compared to their uninfected counterparts. Furthermore, we found significant associations between the metabolome, S. musiva abundance, and microbiome composition and α-diversity, particularly in P. trichocarpa leaves. Our results show that S. musiva colonizes both resistant and susceptible hosts and that the effects of S. musiva on susceptible trees are not confined to the site of canker infection. IMPORTANCE Poplar (Populus spp.) trees are ecologically and economically important trees throughout North America. However, many western North American poplar plantations are at risk due to the introduction of the nonnative fungal pathogen Sphaerulina musiva, which causes leaf spot and cankers, limiting their production. To better understand the interactions among the pathogen S. musiva, the poplar metabolome, and the poplar microbiome, we collected leaf, root, and rhizosphere samples from poplar trees consisting of 10 genotypes and two species with differential resistance to S. musiva in a common garden experiment. Here, we outline the nuanced relationships between the poplar metabolome, microbiome, and S. musiva, showing that S. musiva may affect poplar trees in tissues distal to the site of infection (i.e., stem). Our research contributes to improving the fundamental understanding of S. musiva and Populus sp. ecology and the utility of a holobiont approach in understanding plant disease.


Assuntos
Ascomicetos , Microbiota , Populus , Populus/genética , Ascomicetos/genética , Microbiota/genética , Árvores/microbiologia , Metaboloma
8.
Plant Cell ; 34(9): 3339-3363, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-35670759

RESUMO

Lignin biosynthesis begins with the deamination of phenylalanine and tyrosine (Tyr) as a key branch point between primary and secondary metabolism in land plants. Here, we used a systems biology approach to investigate the global metabolic responses to lignin pathway perturbations in the model grass Brachypodium distachyon. We identified the lignin biosynthetic protein families and found that ammonia-lyases (ALs) are among the most abundant proteins in lignifying tissues in grasses. Integrated metabolomic and proteomic data support a link between lignin biosynthesis and primary metabolism mediated by the ammonia released from ALs that is recycled for the synthesis of amino acids via glutamine. RNA interference knockdown of lignin genes confirmed that the route of the canonical pathway using shikimate ester intermediates is not essential for lignin formation in Brachypodium, and there is an alternative pathway from Tyr via sinapic acid for the synthesis of syringyl lignin involving yet uncharacterized enzymatic steps. Our findings support a model in which plant ALs play a central role in coordinating the allocation of carbon for lignin synthesis and the nitrogen available for plant growth. Collectively, these data also emphasize the value of integrative multiomic analyses to advance our understanding of plant metabolism.


Assuntos
Brachypodium , Lignina , Proteínas de Plantas , Proteômica
9.
Sci Adv ; 8(10): eabm8145, 2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35263134

RESUMO

The factors controlling lignin composition remain unclear. Catechyl (C)-lignin is a homopolymer of caffeyl alcohol with unique properties as a biomaterial and precursor of industrial chemicals. The lignin synthesized in the seed coat of Cleome hassleriana switches from guaiacyl (G)- to C-lignin at around 12 to 14 days after pollination (DAP), associated with a rerouting of the monolignol pathway. Lack of synthesis of caffeyl alcohol limits C-lignin formation before around 12 DAP, but coniferyl alcohol is still synthesized and highly accumulated after 14 DAP. We propose a model in which, during C-lignin biosynthesis, caffeyl alcohol noncompetitively inhibits oxidation of coniferyl alcohol by cell wall laccases, a process that might limit movement of coniferyl alcohol to the apoplast. Developmental changes in both substrate availability and laccase specificity together account for the metabolic fates of G- and C-monolignols in the Cleome seed coat.

10.
Plant Physiol ; 189(2): 516-526, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35298644

RESUMO

As the focus for CRISPR/Cas-edited plants moves from proof-of-concept to real-world applications, precise gene manipulation will increasingly require concurrent multiplex editing for polygenic traits. A common approach for editing across multiple sites is to design one guide RNA (gRNA) per target; however, this complicates construct assembly and increases the possibility of off-target mutations. In this study, we utilized one gRNA to target MYB186, a known positive trichome regulator, as well as its paralogs MYB138 and MYB38 at a consensus site for mutagenesis in hybrid poplar (Populus tremula × P. alba INRA 717-1B4). Unexpected duplications of MYB186 and MYB138 resulted in eight alleles for the three targeted genes in the hybrid poplar. Deep sequencing and polymerase chain reaction analyses confirmed editing across all eight targets in nearly all of the resultant glabrous mutants, ranging from small indels to large genomic dropouts, with no off-target activity detected at four potential sites. This highlights the effectiveness of a single gRNA targeting conserved exonic regions for multiplex editing. Additionally, cuticular wax and whole-leaf analyses showed a complete absence of triterpenes in the trichomeless mutants, hinting at a previously undescribed role for the nonglandular trichomes of poplar.


Assuntos
Populus , RNA Guia de Cinetoplastídeos , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Populus/genética , RNA Guia de Cinetoplastídeos/genética , Tricomas
11.
Nat Biotechnol ; 40(3): 335-344, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35190685

RESUMO

Many industrial chemicals that are produced from fossil resources could be manufactured more sustainably through fermentation. Here we describe the development of a carbon-negative fermentation route to producing the industrially important chemicals acetone and isopropanol from abundant, low-cost waste gas feedstocks, such as industrial emissions and syngas. Using a combinatorial pathway library approach, we first mined a historical industrial strain collection for superior enzymes that we used to engineer the autotrophic acetogen Clostridium autoethanogenum. Next, we used omics analysis, kinetic modeling and cell-free prototyping to optimize flux. Finally, we scaled-up our optimized strains for continuous production at rates of up to ~3 g/L/h and ~90% selectivity. Life cycle analysis confirmed a negative carbon footprint for the products. Unlike traditional production processes, which result in release of greenhouse gases, our process fixes carbon. These results show that engineered acetogens enable sustainable, high-efficiency, high-selectivity chemicals production. We expect that our approach can be readily adapted to a wide range of commodity chemicals.


Assuntos
2-Propanol , Acetona , Carbono/metabolismo , Ciclo do Carbono , Fermentação
12.
Front Fungal Biol ; 3: 808578, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37746234

RESUMO

The role of lipo-chitooligosaccharides (LCOs) as signaling molecules that mediate the establishment of symbiotic relationships between fungi and plants is being redefined. New evidence suggests that the production of these molecular signals may be more of a common trait in fungi than what was previously thought. LCOs affect different aspects of growth and development in fungi. For the ectomycorrhizal forming fungi, Laccaria bicolor, the production and effects of LCOs have always been studied with a symbiotic plant partner; however, there is still no scientific evidence describing the effects that these molecules have on this organism. Here, we explored the physiological, molecular, and metabolomic changes in L. bicolor when grown in the presence of exogenous sulfated and non-sulfated LCOs, as well as the chitooligomers, chitotetraose (CO4), and chitooctaose (CO8). Physiological data from 21 days post-induction showed reduced fungal growth in response to CO and LCO treatments compared to solvent controls. The underlying molecular changes were interrogated by proteomics, which revealed substantial alterations to biological processes related to growth and development. Moreover, metabolite data showed that LCOs and COs caused a downregulation of organic acids, sugars, and fatty acids. At the same time, exposure to LCOs resulted in the overproduction of lactic acid in L. bicolor. Altogether, these results suggest that these signals might be fungistatic compounds and contribute to current research efforts investigating the emerging impacts of these molecules on fungal growth and development.

13.
Bioresour Bioprocess ; 9(1): 2, 2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38647802

RESUMO

BACKGROUND: Biochar ozonization was previously shown to dramatically increase its cation exchange capacity, thus improving its nutrient retention capacity. The potential soil application of ozonized biochar warrants the need for a toxicity study that investigates its effects on microorganisms. RESULTS: In the study presented here, we found that the filtrates collected from ozonized pine 400 biochar and ozonized rogue biochar did not have any inhibitory effects on the soil environmental bacteria Pseudomonas putida, even at high dissolved organic carbon (DOC) concentrations of 300 ppm. However, the growth of Synechococcus elongatus PCC 7942 was inhibited by the ozonized biochar filtrates at DOC concentrations greater than 75 ppm. Further tests showed the presence of some potential inhibitory compounds (terephthalic acid and p-toluic acid) in the filtrate of non-ozonized pine 400 biochar; these compounds were greatly reduced upon wet-ozonization of the biochar material. Nutrient detection tests also showed that dry-ozonization of rogue biochar enhanced the availability of nitrate and phosphate in its filtrate, a property that may be desirable for soil application. CONCLUSION: Ozonized biochar substances can support soil environmental bacterium Pseudomonas putida growth, since ozonization detoxifies the potential inhibitory aromatic molecules.

14.
Plant Biotechnol J ; 19(12): 2454-2468, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34272801

RESUMO

Soil-borne microbes can establish compatible relationships with host plants, providing a large variety of nutritive and protective compounds in exchange for photosynthesized sugars. However, the molecular mechanisms mediating the establishment of these beneficial relationships remain unclear. Our previous genetic mapping and whole-genome resequencing studies identified a gene deletion event of a Populus trichocarpa lectin receptor-like kinase gene PtLecRLK1 in Populus deltoides that was associated with poor-root colonization by the ectomycorrhizal fungus Laccaria bicolor. By introducing PtLecRLK1 into a perennial grass known to be a non-host of L. bicolor, switchgrass (Panicum virgatum L.), we found that L. bicolor colonizes ZmUbipro-PtLecRLK1 transgenic switchgrass roots, which illustrates that the introduction of PtLecRLK1 has the potential to convert a non-host to a host of L. bicolor. Furthermore, transcriptomic and proteomic analyses on inoculated-transgenic switchgrass roots revealed genes/proteins overrepresented in the compatible interaction and underrepresented in the pathogenic defence pathway, consistent with the view that pathogenic defence response is down-regulated during compatible interaction. Metabolomic profiling revealed that root colonization in the transgenic switchgrass was associated with an increase in N-containing metabolites and a decrease in organic acids, sugars, and aromatic hydroxycinnamate conjugates, which are often seen in the early steps of establishing compatible interactions. These studies illustrate that PtLecRLK1 is able to render a plant susceptible to colonization by the ectomycorrhizal fungus L. bicolor and shed light on engineering mycorrhizal symbiosis into a non-host to enhance plant productivity and fitness on marginal lands.


Assuntos
Panicum , Lectinas , Panicum/genética , Panicum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Proteômica
16.
J Exp Bot ; 72(7): 2710-2726, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33463678

RESUMO

The Arabidopsis plastid-localized ALD1 protein acts in the lysine catabolic pathway that produces infection-induced pipecolic acid (Pip), Pip derivatives, and basal non-Pip metabolite(s). ALD1 is indispensable for disease resistance associated with Pseudomonas syringae infections of naïve plants as well as those previously immunized by a local infection, a phenomenon called systemic acquired resistance (SAR). Pseudomonas syringae is known to associate with mesophyll as well as epidermal cells. To probe the importance of epidermal cells in conferring bacterial disease resistance, we studied plants in which ALD1 was only detectable in the epidermal cells of specific leaves. Local disease resistance and many features of SAR were restored when ALD1 preferentially accumulated in the epidermal plastids at immunization sites. Interestingly, SAR restoration occurred without appreciable accumulation of Pip or known Pip derivatives in secondary distal leaves. Our findings establish that ALD1 has a non-autonomous effect on pathogen growth and defense activation. We propose that ALD1 is sufficient in the epidermis of the immunized leaves to activate SAR, but basal ALD1 and possibly a non-Pip metabolite(s) are also needed at all infection sites to fully suppress bacterial growth. Thus, epidermal plastids that contain ALD1 play a key role in local and whole-plant immune signaling.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Resistência à Doença , Epiderme , Doenças das Plantas , Plastídeos , Pseudomonas syringae
17.
Microorganisms ; 8(8)2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32731357

RESUMO

Pseudomonas syringae is a ubiquitous plant pathogen, infecting both woody and herbaceous plants and resulting in devastating agricultural crop losses. Characterized by a remarkable specificity for plant hosts, P. syringae pathovars utilize a number of virulence factors including the type III secretion system and effector proteins to elicit disease in a particular host species. Here, two Pseudomonas syringae strains were isolated from diseased Populustrichocarpa seeds. The pathovars were capable of inhibiting poplar seed germination and were selective for the Populus genus. Sequencing of the newly described organisms revealed similarity to phylogroup II pathogens and genomic regions associated with woody host-associated plant pathogens, as well as genes for specific virulence factors. The host response to infection, as revealed through metabolomics, is the induction of the stress response through the accumulation of higher-order salicylates. Combined with necrosis on leaf surfaces, the plant appears to quickly respond by isolating infected tissues and mounting an anti-inflammatory defense. This study improves our understanding of the initial host response to epiphytic pathogens in Populus and provides a new model system for studying the effects of a bacterial pathogen on a woody host plant in which both organisms are fully genetically sequenced.

18.
mSystems ; 5(3)2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32606021

RESUMO

Drought stress negatively impacts microbial activity, but the magnitude of stress responses is likely dependent on a diversity of belowground interactions. Populus trichocarpa individuals and no-plant bulk soils were exposed to extended drought (∼0.03% gravimetric water content [GWC] after 12 days), rewet, and a 12-day "recovery" period to determine the effects of plant presence in mediating soil microbiome stability to water stress. Plant metabolomic analyses indicated that drought exposure increased host investment in C and N metabolic pathways (amino acids, fatty acids, phenolic glycosides) regardless of recovery. Several metabolites positively correlated with root-associated microbial alpha-diversity, but not those of soil communities. Soil bacterial community composition shifted with P. trichocarpa presence and with drought relative to irrigated controls, whereas soil fungal composition shifted only with plant presence. However, root fungal communities strongly shifted with drought, whereas root bacterial communities changed to a lesser degree. The proportion of bacterial water-stress opportunistic operational taxonomic units (OTUs) (enriched counts in drought) was high (∼11%) at the end of drying phases and maintained after rewet and recovery phases in bulk soils, but it declined over time in soils with plants present. For root fungi, opportunistic OTUs were high at the end of recovery in drought treatments (∼17% abundance), although relatively not responsive in soils, particularly planted soils (<0.5% abundance for sensitive or opportunistic). These data indicate that plants modulate soil and root-associated microbial drought responses via tight plant-microbe linkages during extreme drought scenarios, but trajectories after extreme drought vary with plant habitat and microbial functional groups.IMPORTANCE Climate change causes significant alterations in precipitation and temperature regimes that are predicted to become more extreme throughout the next century. Microorganisms are important members within ecosystems, and how they respond to these changing abiotic stressors has large implications for the functioning of ecosystems, the recycling of nutrients, and the health of the aboveground plant community. Drought stress negatively impacts microbial activity, but the magnitude of this stress response may be dependent on above- and belowground interactions. This study demonstrates that beneficial associations between plants and microbes can enhance tolerance to abiotic stress.

19.
Metab Eng ; 62: 95-105, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32540392

RESUMO

Gas fermentation by autotrophic bacteria, such as clostridia, offers a sustainable path to numerous bioproducts from a range of local, highly abundant, waste and low-cost feedstocks, such as industrial flue gases or syngas generated from biomass or municipal waste. Unfortunately, designing and engineering clostridia remains laborious and slow. The ability to prototype individual genetic part function, gene expression patterns, and biosynthetic pathway performance in vitro before implementing designs in cells could help address these bottlenecks by speeding up design. Unfortunately, a high-yielding cell-free gene expression (CFE) system from clostridia has yet to be developed. Here, we report the development and optimization of a high-yielding (236 ± 24 µg/mL) batch CFE platform from the industrially relevant anaerobe, Clostridium autoethanogenum. A key feature of the platform is that both circular and linear DNA templates can be applied directly to the CFE reaction to program protein synthesis. We demonstrate the ability to prototype gene expression, and quantitatively map aerobic cell-free metabolism in lysates from this system. We anticipate that the C. autoethanogenum CFE platform will not only expand the protein synthesis toolkit for synthetic biology, but also serve as a platform in expediting the screening and prototyping of gene regulatory elements in non-model, industrially relevant microbes.


Assuntos
Sistema Livre de Células , Engenharia Metabólica , Redes e Vias Metabólicas , Sistema Livre de Células/metabolismo , Clostridium , Biossíntese de Proteínas
20.
Plant Biotechnol J ; 18(3): 859-871, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31498543

RESUMO

Prefoldin (PFD) is a group II chaperonin that is ubiquitously present in the eukaryotic kingdom. Six subunits (PFD1-6) form a jellyfish-like heterohexameric PFD complex and function in protein folding and cytoskeleton organization. However, little is known about its function in plant cell wall-related processes. Here, we report the functional characterization of a PFD gene from Populus deltoides, designated as PdPFD2.2. There are two copies of PFD2 in Populus, and PdPFD2.2 was ubiquitously expressed with high transcript abundance in the cambial region. PdPFD2.2 can physically interact with DELLA protein RGA1_8g, and its subcellular localization is affected by the interaction. In P. deltoides transgenic plants overexpressing PdPFD2.2, the lignin syringyl/guaiacyl ratio was increased, but cellulose content and crystallinity index were unchanged. In addition, the total released sugar (glucose and xylose) amounts were increased by 7.6% and 6.1%, respectively, in two transgenic lines. Transcriptomic and metabolomic analyses revealed that secondary metabolic pathways, including lignin and flavonoid biosynthesis, were affected by overexpressing PdPFD2.2. A total of eight hub transcription factors (TFs) were identified based on TF binding sites of differentially expressed genes in Populus transgenic plants overexpressing PdPFD2.2. In addition, several known cell wall-related TFs, such as MYB3, MYB4, MYB7, TT8 and XND1, were affected by overexpression of PdPFD2.2. These results suggest that overexpression of PdPFD2.2 can reduce biomass recalcitrance and PdPFD2.2 is a promising target for genetic engineering to improve feedstock characteristics to enhance biofuel conversion and reduce the cost of lignocellulosic biofuel production.


Assuntos
Biomassa , Chaperonas Moleculares/genética , Populus/genética , Genes de Plantas , Lignina , Plantas Geneticamente Modificadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...