Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochimie ; 82(3): 211-9, 2000 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-10863004

RESUMO

Bifunctional catalase-peroxidases are the least understood type of peroxidases. A high-level expression in Escherichia coli of a fully active recombinant form of a catalase-peroxidase (KatG) from the cyanobacterium Anacystis nidulans (Synechococcus PCC 6301) is reported. Since both physical and kinetic characterization revealed its identity with the wild-type protein, the large quantities of recombinant KatG allowed the examination of both the spectral characteristics and the reactivity of its redox intermediates by using the multi-mixing stopped-flow technique. The homodimeric acidic protein (pI = 4.6) contained high catalase activity (apparent K(m) = 4.8 mM and apparent k(cat) = 8850 s(-1)). Cyanide is shown to be an effective inhibitor of the catalase reaction. The second-order rate constant for cyanide binding to the ferric protein is (6.9 +/- 0.2) x 10(5) M(-1 )s(-1) at pH 7.0 and 15 degrees C and the dissociation constant of the cyanide complex is 17 microM. Because of the overwhelming catalase activity, peroxoacetic acid has been used for compound I formation. The apparent second-order rate constant for formation of compound I from the ferric enzyme and peroxoacetic acid is (1.3 +/- 0.3) x 10(4 )M(-1 )s(-1) at pH 7.0 and 15 degrees C. The spectrum of compound I is characterized by about 40% hypochromicity, a Soret region at 406 nm, and isosbestic points between the native enzyme and compound I at 355 and 428 nm. Rate constants for reduction of KatG compound I by o-dianisidine, pyrogallol, aniline and isoniazid are shown to be (7.3 +/- 0.4) x 10(6) M(-1 )s(-1), (5.4 +/- 0.3) x 10(5) M(-1 )s(-1), (1.6 +/- 0.3) x 10(5) M(-1 )s(-1) and (4.3 +/- 0.2) x 10(4) M(-1 )s(-1), respectively. The redox intermediate formed upon reduction of compound I did not exhibit the classical red-shifted peroxidase compound II spectrum which characterizes the presence of a ferryl oxygen species. Its spectral features indicate that the single oxidizing equivalent in KatG compound II is contained on an amino acid which is not electronically coupled to the heme.


Assuntos
Proteínas de Bactérias , Cianobactérias/enzimologia , Peroxidases/genética , Peroxidases/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Catálise , Clonagem Molecular , Cianobactérias/genética , Primers do DNA , DNA Bacteriano , Escherichia coli/genética , Cinética , Ligantes , Dados de Sequência Molecular , Peroxidases/isolamento & purificação , Ligação Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Análise Espectral
2.
Biochemistry ; 38(32): 10480-8, 1999 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-10441144

RESUMO

A high-level expression in Escherichia coli of a fully active recombinant form of a catalase-peroxidase (KatG) from the cyanobacterium Synechocystis PCC 6803 is reported. Since both physical and kinetic characterization revealed its identity with the wild-type protein, the large quantities of recombinant KatG allowed the first examination of second-order rate constants for the oxidation of a series of aromatic donor molecules (monosubstituted phenols and anilines) by a bifunctional catalase-peroxidase compound I using the sequential-mixing stopped-flow technique. Because of the overwhelming catalase activity, peroxoacetic acid has been used for compound I formation. A >/=50-fold excess of peroxoacetic acid is required to obtain a spectrum of relatively pure and stable compound I which is characterized by about 40% hypochromicity, a Soret maximum at 406 nm, and isosbestic points between the native enzyme and compound I at 357 and 430 nm. The apparent second-order rate constant for formation of compound I from ferric enzyme and peroxoacetic acid is (8.74 +/- 0.26) x 10(3) M(-)(1) s(-)(1) at pH 7. 0. Reduction of compound I by aromatic donor molecules is dependent upon the substituent effect on the benzene ring. The apparent second-order rate constants varied from (3.6 +/- 0.1) x 10(6) M(-)(1) s(-)(1) for p-hydroxyaniline to (5.0 +/- 0.1) x 10(2) M(-)(1) s(-)(1) for p-hydroxybenzenesulfonic acid. They are shown to correlate with the substituent constants in the Hammett equation, which suggests that in bifunctional catalase-peroxidases the aromatic donor molecule donates an electron to compound I and loses a proton simultaneously. The value of rho, the susceptibility factor in the Hammett equation, is -3.4 +/- 0.4 for the phenols and -5.1 +/- 0.8 for the anilines. The pH dependence of compound I reduction by aniline exhibits a relatively sharp maximum at pH 5. The redox intermediate formed upon reduction of compound I has spectral features which indicate that the single oxidizing equivalent in KatG compound II is contained on an amino acid which is not electronically coupled to the heme.


Assuntos
Compostos de Anilina/metabolismo , Proteínas de Bactérias , Cianobactérias/enzimologia , Peroxidases/metabolismo , Fenóis/metabolismo , Proteínas Recombinantes/metabolismo , Compostos de Anilina/química , Catalase/metabolismo , Catálise , Cianobactérias/genética , Escherichia coli/genética , Concentração de Íons de Hidrogênio , Cinética , Modelos Químicos , Oxirredução , Peroxidases/biossíntese , Peroxidases/química , Peroxidases/genética , Fenóis/química , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Espectrofotometria , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...