Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 13(23): 26735-26747, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34081856

RESUMO

Microfluidic gradient generators have been used to study cellular migration, growth, and drug response in numerous biological systems. One type of device combines a hydrogel and polydimethylsiloxane (PDMS) to generate "flow-free" gradients; however, their requirements for either negative flow or external clamps to maintain fluid-tight seals between the two layers have restricted their utility among broader applications. In this work, a two-layer, flow-free microfluidic gradient generator was developed using thiol-ene chemistry. Both rigid thiol-acrylate microfluidic resin (TAMR) and diffusive thiol-acrylate hydrogel (H) layers were synthesized from commercially available monomers at room temperature and pressure using a base-catalyzed Michael addition. The device consisted of three parallel microfluidic channels negatively imprinted in TAMR layered on top of the thiol-acrylate hydrogel to facilitate orthogonal diffusion of chemicals to the direction of flow. Upon contact, these two layers formed fluid-tight channels without any external pressure due to a strong adhesive interaction between the two layers. The diffusion of molecules through the TAMR/H system was confirmed both experimentally (using fluorescent microscopy) and computationally (using COMSOL). The performance of the TAMR/H system was compared to a conventional PDMS/agarose device with a similar geometry by studying the chemorepulsive response of a motile strain of GFP-expressing Escherichia coli. Population-based analysis confirmed a similar migratory response of both wild-type and mutant E. coli in both of the microfluidic devices. This confirmed that the TAMR/H hybrid system is a viable alternative to traditional PDMS-based microfluidic gradient generators and can be used for several different applications.


Assuntos
Acrilatos/química , Quimiotaxia , Escherichia coli/fisiologia , Hidrogéis/química , Microfluídica/instrumentação , Cimentos de Resina/química , Compostos de Sulfidrila/química , Adesivos , Microfluídica/métodos
2.
J Phys Chem B ; 123(43): 9054-9065, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31545606

RESUMO

Naturally occurring enzymatic pathways enable highly specific, rapid thiophenic sulfur cleavage occurring at ambient temperature and pressure, which may be harnessed for the desulfurization of petroleum-based fuel. One pathway found in bacteria is a four-step catabolic pathway (the 4S pathway) converting dibenzothiophene (DBT), a common crude oil contaminant, into 2-hydroxybiphenyl (HBP) without disrupting the carbon-carbon bonds. 2'-Hydroxybiphenyl-2-sulfinate desulfinase (DszB), the rate-limiting enzyme in the enzyme cascade, is capable of selectively cleaving carbon-sulfur bonds. Accordingly, understanding the molecular mechanisms of DszB activity may enable development of the cascade as industrial biotechnology. Based on crystallographic evidence, we hypothesized that DszB undergoes an active site conformational change associated with the catalytic mechanism. Moreover, we anticipated this conformational change is responsible, in part, for enhancing product inhibition. Rhodococcus erythropolis IGTS8 DszB was recombinantly produced and purified via Escherichia coli BL21 to test these hypotheses. Activity and the resulting conformational change of DszB in the presence of HBP were evaluated. The activity of recombinant DszB was comparable to the natively expressed enzyme and was inhibited via competitive binding of the product, HBP. Using circular dichroism, global changes in DszB conformation were monitored in response to HBP concentration, which indicated that both product and substrate produced similar structural changes. Molecular dynamics (MD) simulations and free energy perturbation with Hamiltonian replica exchange molecular dynamics (FEP/λ-REMD) calculations were used to investigate the molecular-level phenomena underlying the connection between conformation change and kinetic inhibition. In addition to the HBP, MD simulations of DszB bound to common, yet structurally diverse, crude oil contaminants 2',2-biphenol (BIPH), 1,8-naphthosultam (NTAM), 2-biphenyl carboxylic acid (BCA), and 1,8-naphthosultone (NAPO) were performed. Analysis of the simulation trajectories, including root-mean-square fluctuation (RMSF), center of mass (COM) distances, and strength of nonbonded interactions, when compared with FEP/λ-REMD calculations of ligand binding free energy, showed excellent agreement with experimentally determined inhibition constants. Together, the results show that the combination of a molecule's hydrophobicity and nonspecific interactions with nearby functional groups contributes to a competitive inhibition mechanism that locks DszB in a closed conformation and precludes substrate access to the active site.


Assuntos
Compostos de Bifenilo/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/química , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Rhodococcus/enzimologia , Tiofenos/metabolismo , Simulação de Dinâmica Molecular , Conformação Proteica
3.
Methods Mol Biol ; 1729: 47-59, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29429081

RESUMO

Microfluidic technology allows fast and precise measurement of chemotaxis responses to both attractant and repellent signals. One of the major drawbacks of current microfluidic chemotaxis assays is the presence of bacterial cells within the concentration gradient flow field, which has the potential for flow effects masking the chemotaxis response. This chapter describes a new microfluidic device for producing stable concentration gradients and measuring the response of cells to the gradient without exposing them to any flow. Unlike other methods described in the literature, this method is capable of producing gradients of any shape, almost instantaneously, allowing the measurement of time-dependent response of cells to a variety of signals.


Assuntos
Quimiotaxia , Escherichia coli/fisiologia , Técnicas Analíticas Microfluídicas/instrumentação , Desenho de Equipamento , Dispositivos Lab-On-A-Chip , Microscopia de Fluorescência
4.
J Mol Graph Model ; 72: 32-42, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28027509

RESUMO

2'-Hydroxybiphenyl-2-sulfinate (HBPS) desulfinase (DszB) catalyzes the cleavage of the carbon-sulfur bond from HBPS in the final step of microbial 4S pathway desulfurization reactions. DszB is notable for its substrate specificity and exhibits product inhibition, both of which hinder the overall 4S pathway turnover rate. To understand the molecular-level contributions to substrate and inhibitor binding to DszB, we plan to perform molecular dynamic simulations bound to an array of naphthenic molecules and biphenyl analogues of HBPS. However, many of the small molecules we are interested in are not included in standard force field packages, and thus, we must first produce accurate molecular mechanics force fields. Here, we develop and validate CHARMM-compatible force field parameters for the HBPS substrate, the 2-hydroxybiphenyl product, and potential inhibitors including: 2,2'-biphenol, 2-biphenyl carboxylic acid, 1,8-naphthosultam, and 1,8-naphthosultone. The selected molecules represent biphenyl compounds having both a single and double functional group and the planar naphthenic molecule class, all likely present in the oil-rich environment surrounding DszB-producing microorganisms. The Force Field Toolkit (ffTK) in VMD was used to optimize charge, bond distance, angle, and dihedral parameters. Optimized geometries were determined from quantum mechanical calculations. Molecular simulations of the molecules in explicit and implicit water solutions were conducted to assess the abilities of optimized parameters to recapitulate optimized geometries. Calculated infrared (IR) spectra were obtained and compared with experimental IR spectra for validation of the optimized MM parameters.


Assuntos
Compostos de Bifenilo/química , Modelos Moleculares , Compostos de Sulfônio/química , Conformação Molecular , Teoria Quântica , Espectrofotometria Infravermelho , Torção Mecânica
6.
Nat Protoc ; 5(5): 864-72, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20431532

RESUMO

The plug-in-pond and capillary assays are convenient methods for measuring attractant and repellent bacterial chemotaxis. However, these assays do not provide quantitative information on the extent of migration and are not well-suited for investigating repellent taxis. Here, we describe a protocol for a flow-based microfluidic system (microFlow) to quantitatively investigate chemotaxis in response to concentration gradients of attractants and repellents. The microFlow device uses diffusive mixing to generate concentration gradients that are stable throughout the chemotaxis chamber and for the duration of the experiment. The gradients may be of any desired absolute concentration and gradient strength. GFP-expressing bacteria immediately encounter a stable concentration gradient when they enter the chemotaxis chamber, and the migration in response to the gradient is monitored by microscopy. The effects of different parameters that influence the extent of migration in the microFlow device-preparation of the motile bacterial population preparation, strength of the concentration gradient and duration of exposure to the gradient-are discussed in the context of repellent taxis of chemotactically wild-type Escherichia coli cells in a gradient of NiSO(4). Fabrication of the microfluidic device takes 1 d while preparing motile cells and carrying out the chemotaxis experiment takes 4-6 h to complete.


Assuntos
Quimiotaxia/fisiologia , Escherichia coli/fisiologia , Técnicas Analíticas Microfluídicas , Fatores Quimiotáticos
7.
J Vis Exp ; (38)2010 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-20404797

RESUMO

Chemotaxis allows bacteria to approach sources of attractant chemicals or to avoid sources of repellent chemicals. Bacteria constantly monitor the concentration of specific chemoeffectors by comparing the current concentration to the concentration detected a few seconds earlier. This comparison determines the net direction of movement. Although multiple, competing gradients often coexist in nature, conventional approaches for investigating bacterial chemotaxis are suboptimal for quantifying migration in response to concentration gradients of attractants and repellents. Here, we describe the development of a microfluidic chemotaxis model for presenting precise and stable concentration gradients of chemoeffectors to bacteria and quantitatively investigating their response to the applied gradient. The device is versatile in that concentration gradients of any desired absolute concentration and gradient strength can be easily generated by diffusive mixing. The device is demonstrated using the response of Escherichia coli RP437 to gradients of amino acids and nickel ions.


Assuntos
Quimiotaxia , Escherichia coli/fisiologia , Técnicas Analíticas Microfluídicas/instrumentação , Fatores Quimiotáticos/química , Técnicas Analíticas Microfluídicas/métodos
8.
J Bacteriol ; 192(10): 2633-7, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20233931

RESUMO

Ni(2+) and Co(2+) are sensed as repellents by the Escherichia coli Tar chemoreceptor. The periplasmic Ni(2+) binding protein, NikA, has been suggested to sense Ni(2+). We show here that neither NikA nor the membrane-bound NikB and NikC proteins of the Ni(2+) transport system are required for repellent taxis in response to Ni(2+).


Assuntos
Transporte Biológico/fisiologia , Quimiotaxia/fisiologia , Escherichia coli/fisiologia , Níquel/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transporte Biológico/genética , Calorimetria , Quimiotaxia/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
9.
Methods Mol Biol ; 571: 1-23, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19763956

RESUMO

Anton van Leeuwenhoek first observed bacterial motility in the seventeenth century, and Wilhelm Pfeffer described bacterial chemotaxis in the late nineteenth century. A number of methods, briefly summarized here, have been developed over the years to quantify the motility and chemotaxis of bacteria, but none of them is totally satisfactory. In this chapter, we describe two new assays for chemotaxis that are based on microfabrication and microfluidic techniques. With easily culturable and manipulated bacteria like Escherichia coli, fluorescent labeling of the cells with green fluorescent protein (GFP) or red fluorescent protein (RFP) provides a convenient method for visualizing cells and differentiating two strains in the same experiment. The methods can be extended to environmental samples and mixed bacterial populations with suitable modifications of the optical recording system. The methods are equally useful for studying random motility, attractant chemotaxis, or repellent chemotaxis. The microfluidic system also provides a straightforward way to enrich for mutants that lose or gain responses to individual chemicals. The same approaches can presumably be used to isolate bacteria from environmental samples that respond, or do not respond, to particular chemicals or mixtures of chemicals.


Assuntos
Fenômenos Fisiológicos Bacterianos , Quimiotaxia/fisiologia , Técnicas Analíticas Microfluídicas/métodos , Escherichia coli/fisiologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo
10.
Appl Environ Microbiol ; 75(13): 4557-64, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19411425

RESUMO

Chemotaxis is the migration of cells in gradients of chemoeffector molecules. Although multiple, competing gradients must often coexist in nature, conventional approaches for investigating bacterial chemotaxis are suboptimal for quantifying migration in response to gradients of multiple signals. In this work, we developed a microfluidic device for generating precise and stable gradients of signaling molecules. We used the device to investigate the effects of individual and combined chemoeffector gradients on Escherichia coli chemotaxis. Laminar flow-based diffusive mixing was used to generate gradients, and the chemotactic responses of cells expressing green fluorescent protein were determined using fluorescence microscopy. Quantification of the migration profiles indicated that E. coli was attracted to the quorum-sensing molecule autoinducer-2 (AI-2) but was repelled from the stationary-phase signal indole. Cells also migrated toward higher concentrations of isatin (indole-2,3-dione), an oxidized derivative of indole. Attraction to AI-2 overcame repulsion by indole in equal, competing gradients. Our data suggest that concentration-dependent interactions between attractant and repellent signals may be important determinants of bacterial colonization of the gut.


Assuntos
Técnicas Bacteriológicas/métodos , Quimiotaxia , Escherichia coli/fisiologia , Técnicas Analíticas Microfluídicas/métodos , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Homosserina/análogos & derivados , Homosserina/metabolismo , Indóis/metabolismo , Isatina/metabolismo , Lactonas/metabolismo , Microscopia de Fluorescência
11.
Ann Biomed Eng ; 37(6): 1206-16, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19291402

RESUMO

Biofilms are highly organized structures coordinately formed by multiple species of bacteria. Quorum sensing (QS) is one cell-cell communication mechanism that is used by bacteria during biofilm formation. Biofilm formation is widely acknowledged to occur through a sequence of spatially and temporally regulated colonization events. While several mathematical models exist for describing biofilm development, these have been developed for open systems and are not applicable to closed systems where biofilm development and hydrodynamics are interlinked. Here, we report the development of a mathematical model describing QS and biofilm formation in a closed system such as a microfluidic channel. The model takes into account the effect of the external environment viz the mass and momentum transport in the microfluidic channel on QS and biofilm development. Model predictions of biofilm thickness were verified experimentally by developing Pseudomonas aeruginosa PA14 biofilms in microfluidic chambers and reflect the interplay between the dynamics of biofilm community development, mass transport, and hydrodynamics. Our QS model is expected to guide the design of experiments in closed systems to address spatio-temporal aspects of QS in biofilm development and can lead to novel approaches for controlling biofilm formation through disruption of QS spatio-temporal dynamics.


Assuntos
Biofilmes/crescimento & desenvolvimento , Microfluídica/métodos , Modelos Biológicos , Percepção de Quorum/fisiologia , Biomassa , Oxigênio/metabolismo , Pseudomonas aeruginosa/crescimento & desenvolvimento , Estresse Mecânico
12.
Infect Immun ; 75(9): 4597-607, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17591798

RESUMO

During infection in the gastrointestinal tract, enterohemorrhagic Escherichia coli (EHEC) O157:H7 is exposed to a wide range of signaling molecules, including the eukaryotic hormones epinephrine and norepinephrine, and bacterial signal molecules such as indole. Since these signaling molecules have been shown to be involved in the regulation of phenotypes such as motility and virulence that are crucial for EHEC infections, we hypothesized that these molecules also govern the initial recognition of the large intestine environment and attachment to the host cell surface. Here, we report that, compared to indole, epinephrine and norepinephrine exert divergent effects on EHEC chemotaxis, motility, biofilm formation, gene expression, and colonization of HeLa cells. Using a novel two-fluorophore chemotaxis assay, it was found that EHEC is attracted to epinephrine and norepinephrine while it is repelled by indole. In addition, epinephrine and norepinephrine also increased EHEC motility and biofilm formation while indole attenuated these phenotypes. DNA microarray analysis of surface-associated EHEC indicated that epinephrine/norepinephrine up-regulated the expression of genes involved in surface colonization and virulence while exposure to indole decreased their expression. The gene expression data also suggested that autoinducer 2 uptake was repressed upon exposure to epinephrine/norepinephrine but not indole. In vitro adherence experiments confirmed that epinephrine and norepinephrine increased attachment to epithelial cells while indole decreased adherence. Taken together, these results suggest that epinephrine and norepinephrine increase EHEC infection while indole attenuates the process.


Assuntos
Quimiotaxia/efeitos dos fármacos , Epinefrina/farmacologia , Escherichia coli O157/crescimento & desenvolvimento , Escherichia coli O157/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Indóis/farmacologia , Norepinefrina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Quimiotaxia/fisiologia , Escherichia coli O157/efeitos dos fármacos , Escherichia coli O157/patogenicidade , Regulação Bacteriana da Expressão Gênica/fisiologia , Células HeLa , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...