Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
STAR Protoc ; 3(4): 101759, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36227743

RESUMO

Precisely measuring the number and somatic volume of neurons in the central nervous system at single-cell resolution is technically challenging. Here, we combine multiple techniques to address this challenge in optically cleared mouse spinal cords. We describe in vivo neuron labeling approaches, tissue-clearing technology, light sheet fluorescence microscopy, and machine learning-guided imaging analysis. This combination provides a precise determination of the cell number and somatic volume of any neuron population in the spinal cords.


Assuntos
Processamento de Imagem Assistida por Computador , Neurônios , Camundongos , Animais , Microscopia de Fluorescência/métodos , Medula Espinal
2.
Psychophysiology ; 58(4): e13757, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33448016

RESUMO

Acoustic startle stimuli inhibit pain, but whether this is due to a cross-modal inhibitory process or some other mechanism is uncertain. To investigate this, electrical stimulation of the sural nerve either preceded or followed an acoustic startle stimulus (by 200 ms) or was presented alone in 30 healthy participants. Five electrical stimuli, five acoustic startle stimuli, 10 startle + electrical stimuli, and 10 electrical + startle stimuli were presented in mixed order at intervals of 30-60 s. Effects of the startle stimulus on pain ratings, pupillary dilatation and nociceptive flexion reflexes to the electric shock were assessed. The acoustic startle stimulus inhibited electrically evoked pain to the ensuing electric shock (p < .001), and the electrical stimulus inhibited the perceived loudness of a subsequent acoustic startle stimulus (p < .05). However, the startle stimulus did not affect electrically evoked pain when presented 200 ms after the electric shock, and electrically evoked pain did not influence the perceived loudness of a prior startle stimulus. Furthermore, stimulus order did not influence the pupillary responses or nociceptive flexion reflexes. These findings suggest that acoustic startle stimuli transiently inhibit nociceptive processing and, conversely, that electrical stimuli inhibit subsequent auditory processing. These inhibitory effects do not seem to involve spinal gating as nociceptive flexion reflexes to the electric shock were unaffected by stimulus order. Thus, cross-modal interactions at convergence points in the brainstem or higher centers may inhibit responses to the second stimulus in a two-stimulus train.


Assuntos
Percepção Auditiva/fisiologia , Inibição Neural/fisiologia , Nociceptividade/fisiologia , Dor Nociceptiva/fisiopatologia , Reflexo de Sobressalto/fisiologia , Nervo Sural/fisiologia , Estimulação Acústica , Adolescente , Adulto , Estimulação Elétrica , Feminino , Humanos , Masculino , Adulto Jovem
3.
Cold Spring Harb Perspect Biol ; 5(4): a013227, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23545422

RESUMO

The endoplasmic reticulum (ER) is a large, continuous membrane-bound organelle comprised of functionally and structurally distinct domains including the nuclear envelope, peripheral tubular ER, peripheral cisternae, and numerous membrane contact sites at the plasma membrane, mitochondria, Golgi, endosomes, and peroxisomes. These domains are required for multiple cellular processes, including synthesis of proteins and lipids, calcium level regulation, and exchange of macromolecules with various organelles at ER-membrane contact sites. The ER maintains its unique overall structure regardless of dynamics or transfer at ER-organelle contacts. In this review, we describe the numerous factors that contribute to the structure of the ER.


Assuntos
Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica , Organelas/metabolismo , Membrana Celular/metabolismo , Células HeLa , Humanos , Imageamento Tridimensional , Substâncias Macromoleculares/metabolismo , Microscopia de Fluorescência , Mitose , Membrana Nuclear/metabolismo , Estrutura Terciária de Proteína
4.
Nat Cell Biol ; 15(2): 169-78, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23263280

RESUMO

We have identified Rab10 as an ER-specific Rab GTPase that regulates ER structure and dynamics. We show that Rab10 localizes to the ER and to dynamic ER-associated structures that track along microtubules and mark the position of new ER tubule growth. Rab10 depletion or expression of a Rab10 GDP-locked mutant alters ER morphology, resulting in fewer ER tubules. We demonstrate that this defect is due to a reduced ability of dynamic ER tubules to grow out and successfully fuse with adjacent ER. Consistent with this function, Rab10 partitions to dynamic ER-associated domains found at the leading edge of almost half of all dynamic ER tubules. Interestingly, this Rab10 domain is highly enriched with at least two ER enzymes that regulate phospholipid synthesis, phosphatidylinositol synthase (PIS) and CEPT1. Both the formation and function of this Rab10/PIS/CEPT1 dynamic domain are inhibited by expression of a GDP-locked Rab10 mutant. Together, these data demonstrate that Rab10 regulates ER dynamics and further suggest that these dynamics could be coupled to phospholipid synthesis.


Assuntos
Retículo Endoplasmático/enzimologia , Forma das Organelas , Proteínas rab de Ligação ao GTP/metabolismo , Animais , CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferase/metabolismo , Células COS , Chlorocebus aethiops , Células HeLa , Humanos , Fusão de Membrana , Microscopia de Vídeo , Microtúbulos/enzimologia , Mutação , Fosfolipídeos/biossíntese , Transporte Proteico , Interferência de RNA , Fatores de Tempo , Transfecção , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Xenopus laevis , Proteínas rab de Ligação ao GTP/genética
5.
Curr Opin Cell Biol ; 21(4): 596-602, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19447593

RESUMO

The endoplasmic reticulum (ER) is a single continuous membrane-enclosed organelle made up of functionally and structurally distinct domains. The ER domains include the nuclear envelope (NE) and the peripheral ER, which is a network of tubules and sheets spread throughout the cytoplasm. The structural organization of the ER is related to its many different cellular functions. Here we will discuss how the various functional domains of the peripheral ER are organized into structurally distinct domains that exist within the continuous membrane bilayer throughout the cell cycle. In addition, we will summarize our current knowledge on how peripheral ER membranes contact various other regions of the cytoplasm including the cytoskeleton, mitochondria, Golgi, and the plasma membrane and what is known about the functions of these interactions.


Assuntos
Retículo Endoplasmático/fisiologia , Animais , Transporte Biológico , Células COS , Chlorocebus aethiops , Citoplasma/metabolismo , Citoesqueleto/metabolismo , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Bicamadas Lipídicas/química , Mitocôndrias/metabolismo , Mitose , Modelos Biológicos , Organelas/metabolismo , Fosfolipídeos/química , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...