Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Chem Phys ; 146(13): 134308, 2017 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-28390380

RESUMO

We provide in this work, the absolute solvation enthalpies and the absolute solvation free energies of the proton in ammonia explicitly versus temperature. As a result, the absolute solvation free energy of the proton remains quite constant for temperatures below 200 K. Above this temperature, it increases as a linear function of the temperature: ΔGam(H+,T)=-1265.832+0.210 T. This indicates that a temperature change of 100 K would induce a solvation free energy change of 21 kJ mol-1. Thus, ignoring this free energy change would lead to a bad description of hydrogen bonds and an unacceptable error higher than 3.7 pKa units. However, the absolute solvation enthalpy of the proton in ammonia is not significantly affected by a temperature change and, the room temperature value is -1217 kJ mol-1. The change of the solvation enthalpy is only within 3 kJ mol-1 for a temperature change up to 200 K.

2.
Phys Chem Chem Phys ; 17(43): 29226-42, 2015 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-26465346

RESUMO

A hydrogen bond network in ammonia clusters plays a key role in understanding the properties of species embedded in ammonia. This network is dictated by the structures of neutral ammonia clusters. In this work, structures of neutral ammonia clusters (NH3)n(=2-10) have been studied at M06-2X/6-31++G(d,p) and MP2/6-31++g(d,p) levels of theory. The analysis of the relative stabilities of various hydrogen bond types has also been studied and vibrational spectroscopy of the ammonia pentamer and decamer is investigated. We noted that M06-2X provides lower electronic energies, greater binding energies and higher structural resolution than MP2. We also noted that at the M06-2X level of theory, the binding energy converges to the experimental vaporization enthalpy faster than that at the MP2 level of theory. As a result, it is found that the M06-2X functional could be more suitable than the MP2 ab initio method in the description of structures and energies of ammonia clusters. However, we found that the electronic energy differences obtained at both levels of computation follow a linear relation with n (number of ammonia molecules in a cluster). As far as the structures of ammonia clusters are concerned, we proposed new "significant" isomers that have not been reported previously. The most remarkable is the global minimum electronic energy structure of the ammonia hexamer, which has an inversion centre and confirms experimental observation. Moreover, we reported the relative stabilities of neutral ammonia clusters for temperatures ranging from 25 to 400 K. The stability of isomers changes with the increase of the temperature. As a result, the branched and less bonded isomers are the most favored at high temperatures and disfavored at low temperatures, while compact and symmetric isomers dominate the population of clusters at low temperatures. In fine, from this work, the global minimum energy structures of ammonia clusters are known for the first time at a given temperature (T ∼ 0-400 K) and at a reliable computational level of theory.


Assuntos
Amônia/química , Isomerismo , Teoria Quântica , Temperatura , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...