Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Chem Phys ; 157(6): 064701, 2022 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-35963716

RESUMO

Water-mediated interactions (WMIs) are responsible for diverse processes in aqueous solutions, including protein folding and nanoparticle aggregation. WMI may be affected by changes in temperature and pressure, and hence, they can alter chemical/physical processes that occur in aqueous environments. Traditionally, attention has been focused on hydrophobic interactions while, in comparison, the role of hydrophilic and hybrid (hydrophobic-hydrophilic) interactions have been mostly overlooked. Here, we study the role of T and P on the WMI between nanoscale (i) hydrophobic-hydrophobic, (ii) hydrophilic-hydrophilic, and (iii) hydrophilic-hydrophobic pairs of (hydroxylated/non-hydroxylated) graphene-based surfaces. We find that hydrophobic, hydrophilic, and hybrid interactions are all sensitive to P. However, while hydrophobic interactions [case (i)] are considerably sensitive to T-variations, hydrophilic [case (ii)] and hybrid interactions [case (iii)] are practically T-independent. An analysis of the entropic and enthalpic contributions to the potential of mean force for cases (i)-(iii) is also presented. Our results are important in understanding T- and P-induced protein denaturation and the interactions of biomolecules in solution, including protein aggregation and phase separation processes. From the computational point of view, the results presented here are relevant in the design of implicit water models for the study of molecular and colloidal/nanoparticle systems at different thermodynamic conditions.


Assuntos
Grafite , Água , Interações Hidrofóbicas e Hidrofílicas , Temperatura , Termodinâmica , Água/química
2.
J Phys Chem B ; 123(5): 1116-1128, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30592598

RESUMO

We perform molecular dynamics simulations to study the effects of temperature and pressure on the water-mediated interaction (WMI) between two nanoscale (apolar) graphene plates at 240 ≤ T ≤ 400 K and -100 ≤ P ≤ 1200 MPa. These are thermodynamic conditions relevant to, for example, cooling-, heating-, compression-, and decompression-induced protein denaturation. We find that at all ( T, P) studied, the potential of mean force between the graphene plates, as a function of plate separation r, exhibits local minima at specific plate separations r = r n that can accommodate n water layers ( n = 0,1,2,3). In particular, our results show that isobaric cooling and isothermal compression have a similar effect on WMI between the plates; both processes tend to suppress the attraction and ultimate collapse of the graphene plates by kinetically trapping the plates at the metastable states with r = r n ( n > 0). In addition, isobaric heating and isothermal decompression also have a similar effect; both processes tend to reduce the range and strength of the interactions between the graphene plates. Interestingly, at low temperatures, the WMI between the plates is affected by crystallization. However, crystallization depends deeply on the water model considered, SPC/E and TIP4P/2005 water models, with the crystallization occurring at different ( T, P) conditions, into different forms of ice.

3.
J Phys Chem B ; 122(38): 8908-8920, 2018 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-30178667

RESUMO

We perform molecular dynamics simulations to study the effects of temperature on the water-mediated interactions between nanoscale apolar solutes. Specifically, we calculate the potential of mean force (PMF) between two graphene plates immersed in water at 240 ≤ T ≤ 400 K and P = 0.1 MPa. These are thermodynamic conditions relevant to cooling- and heating-induced protein denaturation. It is found that both cooling and heating tend to suppress the attraction, and ultimate collapse, of the graphene plates. However, the underlying role played by water upon heating and cooling is different. Isobaric heating reduces the strength and range of the interactions between the plates. Instead, isobaric cooling stabilizes the plates separations that can accommodate an integer number of water layers between the graphene plates. In particular, the energy barriers separating these plate separations increase linearly with 1/ T. We also explore the sensitivity of the plates PMF to the water model employed. In the case of the TIP4P/2005 model, water confined between the plates crystallizes into a defective bilayer ice at low temperatures, whereas in the case of the SPC/E model, water remains in the liquid state at same thermodynamic conditions. The effects of varying water-graphene interactions on the plates PMF are also studied.

4.
J Chem Phys ; 147(7): 074505, 2017 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-28830166

RESUMO

We characterize the phase behavior of glassy water by performing extensive out-of-equilibrium molecular dynamics simulations using the TIP4P/2005 water model. Specifically, we study (i) the pressure-induced transformations between low-density (LDA) and high-density amorphous ice (HDA), (ii) the pressure-induced amorphization (PIA) of hexagonal ice (Ih), (iii) the heating-induced LDA-to-HDA transformation at high pressures, (iv) the heating-induced HDA-to-LDA transformation at low and negative pressures, (v) the glass transition temperatures of LDA and HDA as a function of pressure, and (vi) the limit of stability of LDA upon isobaric heating and isothermal decompression (at negative pressures). These transformations are studied systematically, over a wide range of temperatures and pressures, allowing us to construct a P-T phase diagram for glassy TIP4P/2005 water. Our results are in qualitative agreement with experimental observations and with the P-T phase diagram obtained for glassy ST2 water that exhibits a liquid-liquid phase transition and critical point. We also discuss the mechanism for PIA of ice Ih and show that this is a two-step process where first, the hydrogen-bond network (HBN) is distorted and then the HBN abruptly collapses. Remarkably, the collapse of the HB in ice Ih occurs when the average molecular orientations order, a measure of the tetrahedrality of the HBN, is of the same order as in LDA, suggesting a common mechanism for the LDA-to-HDA and Ih-to-HDA transformations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...