Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 300(2): 105605, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38159857

RESUMO

Prolidase (PEPD) is the only hydrolase that cleaves the dipeptides containing C-terminal proline or hydroxyproline-the rate-limiting step in collagen biosynthesis. However, the molecular regulation of prolidase expression remains largely unknown. In this study, we have identified overlapping binding sites for the transcription factors Krüppel-like factor 6 (KLF6) and Specificity protein 1 (Sp1) in the PEPD promoter and demonstrate that KLF6/Sp1 transcriptionally regulate prolidase expression. By cloning the PEPD promoter into a luciferase reporter and through site-directed deletion, we pinpointed the minimal sequences required for KLF6 and Sp1-mediated PEPD promoter-driven transcription. Interestingly, Sp1 inhibition abrogated KLF6-mediated PEPD promoter activity, suggesting that Sp1 is required for the basal expression of prolidase. We further studied the regulation of PEPD by KLF6 and Sp1 during transforming growth factor ß1 (TGF-ß1) signaling, since both KLF6 and Sp1 are key players in TGF-ß1 mediated collagen biosynthesis. Mouse and human fibroblasts exposed to TGF-ß1 resulted in the induction of PEPD transcription and prolidase expression. Inhibition of TGF-ß1 signaling abrogated PEPD promoter-driven transcriptional activity of KLF6 and Sp1. Knock-down of KLF6 as well as Sp1 inhibition also reduced prolidase expression. Chromatin immunoprecipitation assay supported direct binding of KLF6 and Sp1 to the PEPD promoter and this binding was enriched by TGF-ß1 treatment. Finally, immunofluorescence studies showed that KLF6 co-operates with Sp1 in the nucleus to activate prolidase expression and enhance collagen biosynthesis. Collectively, our results identify functional elements of the PEPD promoter for KLF6 and Sp1-mediated transcriptional activation and describe the molecular mechanism of prolidase expression.


Assuntos
Dipeptidases , Fator 6 Semelhante a Kruppel , Transdução de Sinais , Fator de Transcrição Sp1 , Animais , Humanos , Camundongos , Colágeno/metabolismo , Fator 6 Semelhante a Kruppel/genética , Fator de Transcrição Sp1/genética , Fator de Transcrição Sp1/metabolismo , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo
2.
Cell Rep ; 40(12): 111358, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36130489

RESUMO

Many breast cancer (BC) patients suffer from complications of metastatic disease. To form metastases, cancer cells must become migratory and coordinate both invasive and proliferative programs at distant organs. Here, we identify srGAP1 as a regulator of a proliferative-to-invasive switch in BC cells. High-resolution light-sheet microscopy demonstrates that BC cells can form actin-rich protrusions during extravasation. srGAP1low cells display a motile and invasive phenotype that facilitates their extravasation from blood vessels, as shown in zebrafish and mouse models, while attenuating tumor growth. Interestingly, a population of srGAP1low cells remain as solitary disseminated tumor cells in the lungs of mice bearing BC tumors. Overall, srGAP1low cells have increased Smad2 activation and TGF-ß2 secretion, resulting in increased invasion and p27 levels to sustain quiescence. These findings identify srGAP1 as a mediator of a proliferative to invasive phenotypic switch in BC cells in vivo through a TGF-ß2-mediated signaling axis.


Assuntos
Actinas , Fator de Crescimento Transformador beta2 , Animais , Linhagem Celular Tumoral , Regulação para Baixo , Camundongos , Peixe-Zebra
3.
Front Mol Biosci ; 8: 723003, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34532344

RESUMO

Prolidase (peptidase D), encoded by the PEPD gene, is a ubiquitously expressed cytosolic metalloproteinase, the only enzyme capable of cleaving imidodipeptides containing C-terminal proline or hydroxyproline. Prolidase catalyzes the rate-limiting step during collagen recycling and is essential in protein metabolism, collagen turnover, and matrix remodeling. Prolidase, therefore plays a crucial role in several physiological processes such as wound healing, inflammation, angiogenesis, cell proliferation, and carcinogenesis. Accordingly, mutations leading to loss of prolidase catalytic activity result in prolidase deficiency a rare autosomal recessive metabolic disorder characterized by defective wound healing. In addition, alterations in prolidase enzyme activity have been documented in numerous pathological conditions, making prolidase a useful biochemical marker to measure disease severity. Furthermore, recent studies underscore the importance of a non-enzymatic role of prolidase in cell regulation and infectious disease. This review aims to provide comprehensive information on prolidase, from its discovery to its role in health and disease, while addressing the current knowledge gaps.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...