Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neurosci ; 17: 1232670, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37645372

RESUMO

Aging is associated with impairments in learning, memory, and cognitive flexibility, as well as a gradual decline in hippocampal neurogenesis. We investigated the performance of 6-and 14-month-old mice (considered mature adult and late middle age, respectively) in learning and memory tasks based on the Morris water maze (MWM) and determined their levels of preceding and current neurogenesis. While both age groups successfully performed in the spatial version of MWM (sMWM), the older mice were less efficient compared to the younger mice when presented with modified versions of the MWM that required a reassessment of the previously acquired experience. This was detected in the reversal version of MWM (rMWM) and was particularly evident in the context discrimination MWM (cdMWM), a novel task that required integrating various distal cues, local cues, and altered contexts and adjusting previously used search strategies. Older mice were impaired in several metrics that characterize rMWM and cdMWM, however, they showed improvement and narrowed the performance gap with the younger mice after additional training. Furthermore, we analyzed the adult-born mature and immature neurons in the hippocampal dentate gyrus and found a significant correlation between neurogenesis levels in individual mice and their performance in the tasks demanding cognitive flexibility. These results provide a detailed description of the age-related changes in learning and memory and underscore the importance of hippocampal neurogenesis in supporting cognitive flexibility.

2.
J Neurosci ; 43(34): 6061-6083, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37532464

RESUMO

Exposure to elevated doses of ionizing radiation, such as those in therapeutic procedures, catastrophic accidents, or space exploration, increases the risk of cognitive dysfunction. The full range of radiation-induced cognitive deficits is unknown, partly because commonly used tests may be insufficiently sensitive or may not be adequately tuned for assessing the fine behavioral features affected by radiation. Here, we asked whether γ-radiation might affect learning, memory, and the overall ability to adapt behavior to cope with a challenging environment (cognitive/behavioral flexibility). We developed a new behavioral assay, the context discrimination Morris water maze (cdMWM) task, which is hippocampus-dependent and requires the integration of various contextual cues and the adjustment of search strategies. We exposed male mice to 1 or 5 Gy of γ rays and, at different time points after irradiation, trained them consecutively in spatial MWM, reversal MWM, and cdMWM tasks, and assessed their learning, navigational search strategies, and memory. Mice exposed to 5 Gy performed successfully in the spatial and reversal MWM tasks; however, in the cdMWM task 6 or 8 weeks (but not 3 weeks) after irradiation, they demonstrated transient learning deficit, decreased use of efficient spatially precise search strategies during learning, and, 6 weeks after irradiation, memory deficit. We also observed impaired neurogenesis after irradiation and selective activation of 12-week-old newborn neurons by specific components of cdMWM training paradigm. Thus, our new behavioral paradigm reveals the effects of γ-radiation on cognitive flexibility and indicates an extended timeframe for the functional maturation of new hippocampal neurons.SIGNIFICANCE STATEMENT Exposure to radiation can affect cognitive performance and cognitive flexibility - the ability to adapt to changed circumstances and demands. The full range of consequences of irradiation on cognitive flexibility is unknown, partly because of a lack of suitable models. Here, we developed a new behavioral task requiring mice to combine various types of cues and strategies to find a correct solution. We show that animals exposed to γ-radiation, despite being able to successfully solve standard problems, show delayed learning, deficient memory, and diminished use of efficient navigation patterns in circumstances requiring adjustments of previously used search strategies. This new task could be applied in other settings for assessing the cognitive changes induced by aging, trauma, or disease.


Assuntos
Hipocampo , Aprendizagem , Camundongos , Masculino , Animais , Hipocampo/fisiologia , Neurogênese/fisiologia , Cognição/fisiologia , Neurônios/fisiologia , Aprendizagem em Labirinto/fisiologia
3.
Cells ; 11(24)2022 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-36552766

RESUMO

Tissue-specific somatic stem cells are characterized by their ability to reside in a state of prolonged reversible cell cycle arrest, referred to as quiescence. Maintenance of a balance between cell quiescence and division is critical for tissue homeostasis at the cellular level and is dynamically regulated by numerous extrinsic and intrinsic factors. Analysis of the activation of quiescent stem cells has been challenging because of a lack of methods for direct detection of de novo dividing cells. Here, we present and experimentally verify a novel method based on double labeling with thymidine analogues to detect de novo dividing stem cells in situ. In a proof of concept for the method, we show that memantine, a drug widely used for Alzheimer's disease therapy and a known strong inducer of adult hippocampal neurogenesis, increases the recruitment into the division cycle of quiescent radial glia-like stem cells-primary precursors of the adult-born neurons in the hippocampus. Our method could be applied to assess the effects of aging, pathology, or drug treatments on the quiescent stem cells in stem cell compartments in developing and adult tissues.


Assuntos
Neurogênese , Células-Tronco , Neurogênese/fisiologia , Neurônios , Divisão Celular , Nucleotídeos
4.
Nat Cell Biol ; 24(8): 1211-1225, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35902769

RESUMO

Mouse haematopoietic stem cells (HSCs) first emerge at embryonic day 10.5 (E10.5), on the ventral surface of the dorsal aorta, by endothelial-to-haematopoietic transition. We investigated whether mesenchymal stem cells, which provide an essential niche for long-term HSCs (LT-HSCs) in the bone marrow, reside in the aorta-gonad-mesonephros and contribute to the development of the dorsal aorta and endothelial-to-haematopoietic transition. Here we show that mesoderm-derived PDGFRA+ stromal cells (Mesp1der PSCs) contribute to the haemogenic endothelium of the dorsal aorta and populate the E10.5-E11.5 aorta-gonad-mesonephros but by E13.5 were replaced by neural-crest-derived PSCs (Wnt1der PSCs). Co-aggregating non-haemogenic endothelial cells with Mesp1der PSCs but not Wnt1der PSCs resulted in activation of a haematopoietic transcriptional programme in endothelial cells and generation of LT-HSCs. Dose-dependent inhibition of PDGFRA or BMP, WNT and NOTCH signalling interrupted this reprogramming event. Together, aorta-gonad-mesonephros Mesp1der PSCs could potentially be harnessed to manufacture LT-HSCs from endothelium.


Assuntos
Hemangioblastos , Mesonefro , Animais , Aorta , Hematopoese/genética , Células-Tronco Hematopoéticas , Mesoderma , Camundongos
5.
Cells ; 11(12)2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35741018

RESUMO

Tagging proliferating cells with thymidine analogs is an indispensable research tool; however, the issue of the potential in vivo cytotoxicity of these compounds remains unresolved. Here, we address these concerns by examining the effects of BrdU and EdU on adult hippocampal neurogenesis and EdU on the perinatal somatic development of mice. We show that, in a wide range of doses, EdU and BrdU label similar numbers of cells in the dentate gyrus shortly after administration. Furthermore, whereas the administration of EdU does not affect the division and survival of neural progenitor within 48 h after injection, it does affect cell survival, as evaluated 6 weeks later. We also show that a single injection of various doses of EdU on the first postnatal day does not lead to noticeable changes in a panel of morphometric criteria within the first week; however, higher doses of EdU adversely affect the subsequent somatic maturation and brain growth of the mouse pups. Our results indicate the potential caveats in labeling the replicating DNA using thymidine analogs and suggest guidelines for applying this approach.


Assuntos
Neurogênese , Animais , Bromodesoxiuridina/farmacologia , Contagem de Células , Proliferação de Células , Camundongos , Timidina/farmacologia
6.
Sci Rep ; 12(1): 3648, 2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35256622

RESUMO

Comparison of brain samples representing different developmental stages often necessitates registering the samples to common coordinates. Although the available software tools are successful in registering 3D images of adult brains, registration of perinatal brains remains challenging due to rapid growth-dependent morphological changes and variations in developmental pace between animals. To address these challenges, we introduce CORGI (Customizable Object Registration for Groups of Images), an algorithm for the registration of perinatal brains. First, we optimized image preprocessing to increase the algorithm's sensitivity to mismatches in registered images. Second, we developed an attention-gated simulated annealing procedure capable of focusing on the differences between perinatal brains. Third, we applied classical multidimensional scaling (CMDS) to align ("synchronize") brain samples in time, accounting for individual development paces. We tested CORGI on 28 samples of whole-mounted perinatal mouse brains (P0-P9) and compared its accuracy with other registration algorithms. Our algorithm offers a runtime of several minutes per brain on a laptop and automates such brain registration tasks as mapping brain data to atlases, comparing experimental groups, and monitoring brain development dynamics.


Assuntos
Algoritmos , Imageamento Tridimensional , Animais , Encéfalo/anatomia & histologia , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Camundongos , Software
7.
Fluids Barriers CNS ; 19(1): 20, 2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35248089

RESUMO

BACKGROUND: Hydrocephalus (increased ventricular size due to CSF accumulation) is a common finding in human ciliopathies and in mouse models with genetic depletion of the multiciliated cell (MCC) cilia machinery. However, the contribution of MCC to CSF dynamics and, the mechanism by which impaired MCC function leads to hydrocephalus remains poorly understood. The aim of our study was to examine if defects in MCC ciliogenesis and cilia-generated CSF flow impact central nervous system (CNS) fluid homeostasis including glymphatic transport and solute waste drainage. METHODS: We used two distinct mouse models of MCC ciliopathy: MCC-specific CEP164 conditional knockout mice (FOXJ1-Cre;CEP164fl/fl (N = 10), 3-month-old) and p73 knock-out (p73-/- (N = 8), 5-month-old) mice. Age-matched, wild-type littermates for each of the mutants served as controls. Glymphatic transport and solute drainage was quantified using in vivo T1 mapping by magnetic resonance imaging (MRI) after CSF infusion of gadoteric acid. Brain morphometry and aquaporin 4 expression (AQP4) was also assessed. Intracranial pressure (ICP) was measured in separate cohorts. RESULTS: In both of the two models of MCC ciliopathy we found the ventriculomegaly to be associated with normal ICP. We showed that FOXJ1-Cre;CEP164fl/fl mice with hydrocephalus still demonstrated sustained glymphatic transport and normal AQP4 expression along capillaries. In p73-/- mice glymphatic transport was even increased, and this was paralleled by an increase in AQP4 polarization around capillaries. Further, solute drainage via the cribriform plate to the nasal cavity was severely impaired in both ciliopathy models and associated with chronic rhinitis and olfactory bulb hypoplasia. CONCLUSIONS: The combination of sustained glymphatic transport, impaired solute drainage via the cribriform plate to the nasal cavity and hydrocephalus has not previously been reported in models of MCC ciliopathy. Our data enhance our understanding of how different types of ciliopathies contribute to disruption of CNS fluid homeostasis, manifested in pathologies such as hydrocephalus.


Assuntos
Ciliopatias , Sistema Glinfático , Hidrocefalia , Animais , Ciliopatias/genética , Ciliopatias/patologia , Drenagem , Sistema Glinfático/fisiologia , Hidrocefalia/patologia , Camundongos , Cavidade Nasal/patologia
8.
Histochem Cell Biol ; 157(2): 239-250, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34757474

RESUMO

Detection of synthetic thymidine analogues after their incorporation into replicating DNA during the S-phase of the cell cycle is a widely exploited methodology for evaluating proliferative activity, tracing dividing and post-mitotic cells, and determining cell-cycle parameters both in vitro and in vivo. To produce valid quantitative readouts for in vivo experiments with single intraperitoneal delivery of a particular nucleotide, it is necessary to determine the time interval during which a synthetic thymidine analogue can be incorporated into newly synthesized DNA, and the time by which the nucleotide is cleared from the blood serum. To date, using a variety of methods, only the bioavailability time of tritiated thymidine and 5-bromo-2'-deoxyuridine (BrdU) have been evaluated. Recent advances in double- and triple-S-phase labeling using 5-iodo-2'-deoxyuridine (IdU), 5-chloro-2'-deoxyuridine (CldU), and 5-ethynyl-2'-deoxyuridine (EdU) have raised the question of the bioavailability time of these modified nucleotides. Here, we examined their labeling kinetics in vivo and evaluated label clearance from blood serum after single intraperitoneal delivery to mice at doses equimolar to the saturation dose of BrdU (150 mg/kg). We found that under these conditions, all the examined thymidine analogues exhibit similar labeling kinetics and clearance rates from the blood serum. Our results indicate that all thymidine analogues delivered at the indicated doses have similar bioavailability times (approximately 1 h). Our findings are significant for the practical use of multiple S-phase labeling with any combinations of BrdU, IdU, CldU, and EdU and for obtaining valid labeling readouts.


Assuntos
Bromodesoxiuridina/metabolismo , Desoxiuridina/análogos & derivados , Glibureto/análogos & derivados , Timidina/metabolismo , Animais , Disponibilidade Biológica , Bromodesoxiuridina/administração & dosagem , Bromodesoxiuridina/sangue , Giro Denteado/metabolismo , Desoxiuridina/administração & dosagem , Desoxiuridina/sangue , Desoxiuridina/metabolismo , Glibureto/administração & dosagem , Glibureto/sangue , Glibureto/metabolismo , Injeções Intraperitoneais , Cinética , Camundongos , Camundongos Endogâmicos C57BL , Timidina/administração & dosagem , Timidina/análogos & derivados
9.
Life Sci Alliance ; 4(5)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33653689

RESUMO

Clearance of the airway is dependent on directional mucus flow across the mucociliary epithelium, and deficient flow is implicated in a range of human disorders. Efficient flow relies on proper polarization of the multiciliated cells and sufficient ciliary beat frequency. We show that NO, produced by nNOS in the multiciliated cells of the mouse trachea, controls both the planar polarity and the ciliary beat frequency and is thereby necessary for the generation of the robust flow. The effect of nNOS on the polarity of ciliated cells relies on its interactions with the apical networks of actin and microtubules and involves RhoA activation. The action of nNOS on the beat frequency is mediated by guanylate cyclase; both NO donors and cGMP can augment fluid flow in the trachea and rescue the deficient flow in nNOS mutants. Our results link insufficient availability of NO in ciliated cells to defects in flow and ciliary activity and may thereby explain the low levels of exhaled NO in ciliopathies.


Assuntos
Cílios/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Traqueia/metabolismo , Animais , Polaridade Celular , Cílios/fisiologia , Células Epiteliais , Feminino , Masculino , Camundongos , Camundongos Knockout , Muco , Óxido Nítrico Sintase Tipo I/fisiologia , Traqueia/citologia , Traqueia/fisiologia
10.
Neuroscience ; 422: 75-87, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31672642

RESUMO

The production of new neurons and their incorporation into preexisting neuronal circuits occur throughout adulthood in the olfactory bulb and the hippocampal dentate gyrus of the mammalian brain. To determine whether the adult-born neurons are engaged in the acquisition and retrieval of olfactory associative memory, we developed and validated a single-trial olfactory fear conditioning protocol in mice which allows to detect activation of newborn neurons during a specific episode of memory acquisition. Using c-Fos mapping of neuronal activity, we then examined the activation of new and preexisting neurons during training and testing sessions. We found that a single trial of olfactory fear conditioning did not lead to a significant increase in the number of c-Fos-positive granule cells (GCs) of the olfactory bulb and the dentate gyrus. However, the activity of these two cell populations was dramatically increased during memory retrieval. Activation of neurons in the dentate gyrus during memory retrieval was observed mainly in the suprapyramidal blade. In the olfactory bulb, 1.6-2.7% of newborn GCs marked with thymidine analogues (2, 4, and 6 weeks old) expressed c-Fos during memory retrieval, while in the dentate gyrus no newborn neurons were found among the c-Fos-positive cells. These data are consistent with the hypothesis that adult-born GCs of the olfactory bulb are less involved in odor-cued associative fear memory than in odor-cued operant behavior memory.


Assuntos
Giro Denteado/fisiologia , Memória/fisiologia , Rememoração Mental/fisiologia , Bulbo Olfatório/fisiologia , Animais , Condicionamento Psicológico/fisiologia , Medo , Masculino , Camundongos , Neurogênese/fisiologia , Neurônios/fisiologia , Percepção Olfatória/fisiologia , Proteínas Proto-Oncogênicas c-fos/metabolismo
11.
Behav Brain Res ; 374: 112118, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31369774

RESUMO

Hippocampal neurogenesis presents an unorthodox form of neuronal plasticity and may be relevant for the normal or abnormal functioning of the human and animal brain. As production of new neurons decreases after birth, purposefully activating stem cells to create additional new neurons may augment brain function or slow a disease's progression. Here, we describe current models of hippocampal stem cell maintenance and differentiation, and emphasize key features of neural stem cells' turnover that may define hippocampal neurogenesis enhancement attempts' long-term consequences. We argue that even the basic blueprint of how stem cells are maintained, divide, differentiate, and are eliminated is still contentious, with different models potentially leading to vastly different outcomes in regard to neuronal production and stem cell pool preservation. We propose that to manipulate neurogenesis for a long-term benefit, we must first understand the outline of the neural stem cells' lifecycle.


Assuntos
Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/fisiologia , Animais , Encéfalo/citologia , Diferenciação Celular/fisiologia , Divisão Celular/fisiologia , Hipocampo/citologia , Humanos , Modelos Biológicos , Neurogênese , Neurônios/citologia
12.
Int J Mol Sci ; 20(13)2019 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-31252566

RESUMO

Hydrogen peroxide (H2O2) plays an important role in modulating cell signaling and homeostasis in live organisms. The HyPer family of genetically encoded indicators allows the visualization of H2O2 dynamics in live cells within a limited field of view. The visualization of H2O2 within a whole organism with a single cell resolution would benefit from a slowly reducible fluorescent indicator that integrates the H2O2 concentration over desired time scales. This would enable post hoc optical readouts in chemically fixed samples. Herein, we report the development and characterization of NeonOxIrr, a genetically encoded green fluorescent indicator, which rapidly increases fluorescence brightness upon reaction with H2O2, but has a low reduction rate. NeonOxIrr is composed of circularly permutated mNeonGreen fluorescent protein fused to the truncated OxyR transcription factor isolated from E. coli. When compared in vitro to a standard in the field, HyPer3 indicator, NeonOxIrr showed 5.9-fold higher brightness, 15-fold faster oxidation rate, 5.9-fold faster chromophore maturation, similar intensiometric contrast (2.8-fold), 2-fold lower photostability, and significantly higher pH stability both in reduced (pKa of 5.9 vs. ≥7.6) and oxidized states (pKa of 5.9 vs.≥ 7.9). When expressed in the cytosol of HEK293T cells, NeonOxIrr demonstrated a 2.3-fold dynamic range in response to H2O2 and a 44 min reduction half-time, which were 1.4-fold lower and 7.6-fold longer than those for HyPer3. We also demonstrated and characterized the NeonOxIrr response to H2O2 when the sensor was targeted to the matrix and intermembrane space of the mitochondria, nucleus, cell membranes, peroxisomes, Golgi complex, and endoplasmic reticulum of HEK293T cells. NeonOxIrr could reveal endogenous reactive oxygen species (ROS) production in HeLa cells induced with staurosporine but not with thapsigargin or epidermal growth factor. In contrast to HyPer3, NeonOxIrr could visualize optogenetically produced ROS in HEK293T cells. In neuronal cultures, NeonOxIrr preserved its high 3.2-fold dynamic range to H2O2 and slow 198 min reduction half-time. We also demonstrated in HeLa cells that NeonOxIrr preserves a 1.7-fold ex vivo dynamic range to H2O2 upon alkylation with N-ethylmaleimide followed by paraformaldehyde fixation. The same alkylation-fixation procedure in the presence of NP-40 detergent allowed ex vivo detection of H2O2 with 1.5-fold contrast in neuronal cultures and in the cortex of the mouse brain. The slowly reducible H2O2 indicator NeonOxIrr can be used for both the in vivo and ex vivo visualization of ROS. Expanding the family of fixable indicators may be a promising strategy to visualize biological processes at a single cell resolution within an entire organism.


Assuntos
Técnicas Biossensoriais/métodos , Proteínas de Fluorescência Verde/genética , Peróxido de Hidrogênio/metabolismo , Animais , Encéfalo/metabolismo , Células Cultivadas , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Células HeLa , Humanos , Peróxido de Hidrogênio/análise , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência/métodos , Neurônios/metabolismo , Oxirredução
13.
Cell Rep ; 27(13): 3741-3751.e4, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31242408

RESUMO

Adult hippocampal neurogenesis has been reported to be decreased, increased, or not changed in Alzheimer's disease (AD) patients and related transgenic mouse models. These disparate findings may relate to differences in disease stage, or the presence of seizures, which are associated with AD and can stimulate neurogenesis. In this study, we investigate a transgenic mouse model of AD that exhibits seizures similarly to AD patients and find that neurogenesis is increased in early stages of disease, as spontaneous seizures became evident, but is decreased below control levels as seizures recur. Treatment with the antiseizure drug levetiracetam restores neurogenesis and improves performance in a neurogenesis-associated spatial discrimination task. Our results suggest that seizures stimulate, and later accelerate the depletion of, the hippocampal neural stem cell pool. These results have implications for AD as well as any disorder accompanied by recurrent seizures, such as epilepsy.


Assuntos
Doença de Alzheimer/metabolismo , Hipocampo/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese , Convulsões/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Animais , Modelos Animais de Doenças , Hipocampo/patologia , Humanos , Camundongos , Camundongos Transgênicos , Células-Tronco Neurais/patologia , Convulsões/genética , Convulsões/patologia
15.
Nature ; 567(7747): 234-238, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30814736

RESUMO

Longitudinal bone growth in children is sustained by growth plates, narrow discs of cartilage that provide a continuous supply of chondrocytes for endochondral ossification1. However, it remains unknown how this supply is maintained throughout childhood growth. Chondroprogenitors in the resting zone are thought to be gradually consumed as they supply cells for longitudinal growth1,2, but this model has never been proved. Here, using clonal genetic tracing with multicolour reporters and functional perturbations, we demonstrate that longitudinal growth during the fetal and neonatal periods involves depletion of chondroprogenitors, whereas later in life, coinciding with the formation of the secondary ossification centre, chondroprogenitors acquire the capacity for self-renewal, resulting in the formation of large, stable monoclonal columns of chondrocytes. Simultaneously, chondroprogenitors begin to express stem cell markers and undergo symmetric cell division. Regulation of the pool of self-renewing progenitors involves the hedgehog and mammalian target of rapamycin complex 1 (mTORC1) signalling pathways. Our findings indicate that a stem cell niche develops postnatally in the epiphyseal growth plate, which provides a continuous supply of chondrocytes over a prolonged period.


Assuntos
Condrócitos/citologia , Células Clonais/citologia , Lâmina de Crescimento/citologia , Nicho de Células-Tronco/fisiologia , Envelhecimento , Animais , Cartilagem/citologia , Autorrenovação Celular , Células Clonais/metabolismo , Feminino , Lâmina de Crescimento/metabolismo , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos
16.
Cell Metab ; 29(5): 1061-1077.e8, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30612898

RESUMO

Cellular senescence entails a stable cell-cycle arrest and a pro-inflammatory secretory phenotype, which contributes to aging and age-related diseases. Obesity is associated with increased senescent cell burden and neuropsychiatric disorders, including anxiety and depression. To investigate the role of senescence in obesity-related neuropsychiatric dysfunction, we used the INK-ATTAC mouse model, from which p16Ink4a-expressing senescent cells can be eliminated, and senolytic drugs dasatinib and quercetin. We found that obesity results in the accumulation of senescent glial cells in proximity to the lateral ventricle, a region in which adult neurogenesis occurs. Furthermore, senescent glial cells exhibit excessive fat deposits, a phenotype we termed "accumulation of lipids in senescence." Clearing senescent cells from high fat-fed or leptin receptor-deficient obese mice restored neurogenesis and alleviated anxiety-related behavior. Our study provides proof-of-concept evidence that senescent cells are major contributors to obesity-induced anxiety and that senolytics are a potential new therapeutic avenue for treating neuropsychiatric disorders.


Assuntos
Ansiedade/etiologia , Senescência Celular/efeitos dos fármacos , Neurogênese , Obesidade/complicações , Animais , Ansiedade/tratamento farmacológico , Astrócitos/metabolismo , Comportamento Animal/efeitos dos fármacos , Encéfalo/citologia , Encéfalo/embriologia , Células Cultivadas , Inibidor p16 de Quinase Dependente de Ciclina/genética , Dasatinibe/farmacologia , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Feminino , Fibroblastos/metabolismo , Gotículas Lipídicas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Obesidade/etiologia , Quercetina/farmacologia , Tacrolimo/análogos & derivados , Tacrolimo/farmacologia , Tacrolimo/uso terapêutico
17.
Sci Rep ; 8(1): 15233, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30323302

RESUMO

The NTnC genetically encoded calcium indicator has an advantageous design because of its smaller size, GFP-like N- and C-terminal ends and two-fold reduced number of calcium binding sites compared with widely used indicators from the GCaMP family. However, NTnC has an inverted and modest calcium response and a low temporal resolution. By replacing the mNeonGreen fluorescent part in NTnC with EYFP, we engineered an NTnC-like indicator, referred to as YTnC, that had a positive and substantially improved calcium response and faster kinetics. YTnC had a 3-fold higher calcium response and 13.6-fold lower brightness than NTnC in vitro. According to stopped-flow experiments performed in vitro, YTnC had 4-fold faster calcium-dissociation kinetics than NTnC. In HeLa cells, YTnC exhibited a 3.3-fold lower brightness and 4.9-fold increased response to calcium transients than NTnC. The spontaneous activity of neuronal cultures induced a 3.6-fold larger ΔF/F response of YTnC than previously shown for NTnC. On patched neurons, YTnC had a 2.6-fold lower ΔF/F than GCaMP6s. YTnC successfully visualized calcium transients in neurons in the cortex of anesthetized mice and the hippocampus of awake mice using single- and two-photon microscopy. Moreover, YTnC outperformed GCaMP6s in the mitochondria and endoplasmic reticulum of cultured HeLa and neuronal cells.


Assuntos
Cálcio/química , Proteínas de Fluorescência Verde/química , Engenharia de Proteínas , Troponina C/genética , Animais , Sítios de Ligação , Sinalização do Cálcio/genética , Retículo Endoplasmático/química , Retículo Endoplasmático/metabolismo , Proteínas de Fluorescência Verde/genética , Células HeLa , Hipocampo/química , Hipocampo/metabolismo , Humanos , Cinética , Camundongos , Neurônios/química , Neurônios/metabolismo , Domínios Proteicos/genética , Troponina C/química
20.
Anesthesiology ; 129(1): 118-130, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29688900

RESUMO

BACKGROUND: Potential deleterious effect of multiple anesthesia exposures on the developing brain remains a clinical concern. We hypothesized that multiple neonatal anesthesia exposures are more detrimental to brain maturation than an equivalent single exposure, with more pronounced long-term behavioral consequences. We designed a translational approach using proton magnetic resonance spectroscopy in rodents, noninvasively tracking the neuronal marker N-acetyl-aspartate, in addition to tracking behavioral outcomes. METHODS: Trajectories of N-acetyl-aspartate in anesthesia naïve rats (n = 62, postnatal day 5 to 35) were determined using proton magnetic resonance spectroscopy, creating an "N-acetyl-aspartate growth chart." This chart was used to compare the effects of a single 6-h sevoflurane exposure (postnatal day 7) to three 2-h exposures (postnatal days 5, 7, 10). Long-term effects on behavior were separately examined utilizing novel object recognition, open field testing, and Barnes maze tasks. RESULTS: Utilizing the N-acetyl-aspartate growth chart, deviations from the normal trajectory were documented in both single and multiple exposure groups, with z-scores (mean ± SD) of -0.80 ± 0.58 (P = 0.003) and -1.87 ± 0.58 (P = 0.002), respectively. Behavioral testing revealed that, in comparison with unexposed and single-exposed, multiple-exposed animals spent the least time with the novel object in novel object recognition (F(2,44) = 4.65, P = 0.015), traveled the least distance in open field testing (F(2,57) = 4.44, P = 0.016), but exhibited no learning deficits in the Barnes maze. CONCLUSIONS: Our data demonstrate the feasibility of using the biomarker N-acetyl-aspartate, measured noninvasively using proton magnetic resonance spectroscopy, for longitudinally monitoring anesthesia-induced neurotoxicity. These results also indicate that the neonatal rodent brain is more vulnerable to multiple anesthesia exposures than to a single exposure of the same cumulative duration.


Assuntos
Anestésicos Inalatórios/metabolismo , Ácido Aspártico/análogos & derivados , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Rastreamento de Células/métodos , Espectroscopia de Ressonância Magnética/métodos , Anestésicos Inalatórios/administração & dosagem , Anestésicos Inalatórios/toxicidade , Animais , Animais Recém-Nascidos , Ácido Aspártico/administração & dosagem , Ácido Aspártico/metabolismo , Encéfalo/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Ratos , Ratos Sprague-Dawley , Sevoflurano/administração & dosagem , Sevoflurano/metabolismo , Sevoflurano/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...