Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 44(18): 4618-4621, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31517947

RESUMO

We study the possibility of using convolutional neural networks for wavefront sensing from a guide star image in astronomical telescopes. We generated a large number of artificial atmospheric wavefront screens and determined associated best-fit Zernike polynomials. We also generated in-focus and out-of-focus point-spread functions. We trained the well-known "Inception" network using the artificial data sets and found that although the accuracy does not permit diffraction-limited correction, the potential improvement in the residual phase error is promising for a telescope in the 2-4 m class.

2.
Opt Express ; 17(22): 20575-83, 2009 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-19997286

RESUMO

The new generation of extremely large telescopes will have adaptive optics. Due to the complexity and cost of such systems, it is important to simulate their performance before construction. Most systems planned will have Shack-Hartmann wavefront sensors. Different mathematical models are available for simulation of such wavefront sensors. The choice of wavefront sensor model strongly influences computation time and simulation accuracy. We have studied the influence of three wavefront sensor models on performance calculations for a generic, adaptive optics (AO) system designed for K-band operation of a 42 m telescope. The performance of this AO system has been investigated both for reduced wavelengths and for reduced r(0) in the K band. The telescope AO system was designed for K-band operation, that is both the subaperture size and the actuator pitch were matched to a fixed value of r(0) in the K-band. We find that under certain conditions, such as investigating limiting guide star magnitude for large Strehl-ratios, a full model based on Fraunhofer propagation to the subimages is significantly more accurate. It does however require long computation times. The shortcomings of simpler models based on either direct use of average wavefront tilt over the subapertures for actuator control, or use of the average tilt to move a precalculated point spread function in the subimages are most pronounced for studies of system limitations to operating parameter variations. In the long run, efficient parallelization techniques may be developed to overcome the problem.


Assuntos
Astronomia/instrumentação , Lentes , Modelos Teóricos , Simulação por Computador , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Luz , Reprodutibilidade dos Testes , Espalhamento de Radiação , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...