Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microlife ; 4: uqad019, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37223735

RESUMO

Nucleotide-derived signalling molecules control a wide range of cellular processes in all organisms. The bacteria-specific cyclic dinucleotide c-di-GMP plays a crucial role in regulating motility-to-sessility transitions, cell cycle progression, and virulence. Cyanobacteria are phototrophic prokaryotes that perform oxygenic photosynthesis and are widespread microorganisms that colonize almost all habitats on Earth. In contrast to photosynthetic processes that are well understood, the behavioural responses of cyanobacteria have rarely been studied in detail. Analyses of cyanobacterial genomes have revealed that they encode a large number of proteins that are potentially involved in the synthesis and degradation of c-di-GMP. Recent studies have demonstrated that c-di-GMP coordinates many different aspects of the cyanobacterial lifestyle, mostly in a light-dependent manner. In this review, we focus on the current knowledge of light-regulated c-di-GMP signalling systems in cyanobacteria. Specifically, we highlight the progress made in understanding the most prominent behavioural responses of the model cyanobacterial strains Thermosynechococcus vulcanus and Synechocystis sp. PCC 6803. We discuss why and how cyanobacteria extract crucial information from their light environment to regulate ecophysiologically important cellular responses. Finally, we emphasize the questions that remain to be addressed.

2.
Photochem Photobiol Sci ; 22(6): 1415-1427, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36781703

RESUMO

Phytochromes are linear tetrapyrrole-binding photoreceptors in eukaryotes and bacteria, primarily responding to red and far-red light signals reversibly. Among the GAF domain-based phytochrome superfamily, cyanobacteria-specific cyanobacteriochromes show various optical properties covering the entire visible region. It is unknown what physiological demands drove the evolution of cyanobacteriochromes in cyanobacteria. Here, we utilize ancestral sequence reconstruction and biochemical verification to show that the resurrected ancestral cyanobacteriochrome proteins reversibly respond to green and red light signals. pH titration analyses indicate that the deprotonation of the bound phycocyanobilin chromophore is crucial to perceive green light. The ancestral cyanobacteriochromes show only modest thermal reversion to the green light-absorbing form, suggesting that they evolved to sense the incident green/red light ratio. Many cyanobacteria can utilize green light for photosynthesis using phycobilisome light-harvesting complexes. The green/red sensing cyanobacteriochromes may have allowed better acclimation to changing light environments by rearranging the absorption capacity of the phycobilisome through chromatic acclimation.


Assuntos
Cianobactérias , Fotorreceptores Microbianos , Fitocromo , Ficobilissomas/metabolismo , Proteínas de Bactérias/química , Cianobactérias/química , Fotossíntese , Aclimatação , Fotorreceptores Microbianos/química , Fitocromo/química
3.
Elife ; 112022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35535498

RESUMO

Many cyanobacteria, which use light as an energy source via photosynthesis, show directional movement towards or away from a light source. However, the molecular and cell biological mechanisms for switching the direction of movement remain unclear. Here, we visualized type IV pilus-dependent cell movement in the rod-shaped thermophilic cyanobacterium Thermosynechococcus vulcanus using optical microscopy at physiological temperature and light conditions. Positive and negative phototaxis were controlled on a short time scale of 1 min. The cells smoothly moved over solid surfaces towards green light, but the direction was switched to backward movement when we applied additional blue light illumination. The switching was mediated by three photoreceptors, SesA, SesB, and SesC, which have cyanobacteriochrome photosensory domains and synthesis/degradation activity of the bacterial second messenger cyclic dimeric GMP (c-di-GMP). Our results suggest that the decision-making process for directional switching in phototaxis involves light-dependent changes in the cellular concentration of c-di-GMP. Direct visualization of type IV pilus filaments revealed that rod-shaped cells can move perpendicular to the light vector, indicating that the polarity can be controlled not only by pole-to-pole regulation but also within-a-pole regulation. This study provides insights into previously undescribed rapid bacterial polarity regulation via second messenger signalling with high spatial resolution.


Cyanobacteria, like plants, grow by capturing energy from sunlight. But they have an advantage over their leafy counterparts: they can explore their environment to find the type of light that best suits their needs. These movements rely on hook-like structures, called type IV pili, which allow the cells to pull themselves forward. The pili are usually located at the opposite poles of a rod-shaped cell, allowing the bacteria to move along their longer axis. Yet, the molecular mechanisms that allow cyanobacteria to react to the light are poorly understood. To explore these processes in more detail, Nakane, Enomoto et al. started by shining coloured lights on the rod-shaped cyanobacteria Thermosynechococcus vulcanus. This revealed that the cells moved towards green light but reversed rapidly when blue light was added. The behaviour was disrupted when the genes for three light-sensing proteins were artificially switched off. These molecular players act by changing the levels of cyclic di-GMP, a signalling molecule that may interact with type IV pili. The experiments also showed that T. vulcanus cells were not only moving along their longer axis, but also at a right-angle. This observation contrasts with how other rod-shaped bacteria can explore their environment. A closer look revealed that the cyanobacteria could perform these movements by making asymmetrical adjustment to the way that pili at each pole were working. Further research is now needed to more finely dissect the molecular mechanisms which control this remarkable type of motion.


Assuntos
Cianobactérias , Thermosynechococcus , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cianobactérias/metabolismo , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Fototaxia
4.
Elife ; 102021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34127188

RESUMO

Extracellularpolysaccharides of bacteria contribute to biofilm formation, stress tolerance, and infectivity. Cyanobacteria, the oxygenic photoautotrophic bacteria, uniquely produce sulfated extracellular polysaccharides among bacteria to support phototrophic biofilms. In addition, sulfated polysaccharides of cyanobacteria and other organisms have been focused as beneficial biomaterial. However, very little is known about their biosynthesis machinery and function in cyanobacteria. Here, we found that the model cyanobacterium, Synechocystis sp. strain PCC 6803, formed bloom-like cell aggregates embedded in sulfated extracellular polysaccharides (designated as synechan) and identified whole set of genes responsible for synechan biosynthesis and its transcriptional regulation, thereby suggesting a model for the synechan biosynthesis apparatus. Because similar genes are found in many cyanobacterial genomes with wide variation, our findings may lead elucidation of various sulfated polysaccharides, their functions, and their potential application in biotechnology.


Bacteria are single-cell microorganisms that can form communities called biofilms, which stick to surfaces such as rocks, plants or animals. Biofilms confer protection to bacteria and allow them to colonize new environments. The physical scaffold of biofilms is a viscous matrix made of several molecules, the main one being polysaccharides, complex carbohydrates formed by many monosaccharides (single sugar molecules) joined together. Cyanobacteria, also known as blue-green algae, are a type of bacteria that produce oxygen and use sunlight as an energy source, just as plants and algae do. Cyanobacteria produce extracellular polysaccharides that contain sulfate groups. These sulfated polysaccharides are also produced by animals and algae but are not common in other bacteria or plants. One possible role of sulfated, extracellular polysaccharides in cyanobacteria is keeping cells together in the floating aggregates found in cyanobacterial blooms. These are visible discolorations of the water caused by an overgrowth of cyanobacteria that occur in lakes, estuaries and coastal waters. However, little is known about how these polysaccharides are synthesized in cyanobacteria and what their natural role is. Maeda et al. found a strain of cyanobacteria that formed bloom-like aggregates that were embedded in sulfated extracellular polysaccharides. Using genetic engineering techniques, the researchers identified a set of genes responsible for producing a sulfated extracellular polysaccharide and regulating its levels. They also found that cell aggregates of cyanobacteria can float without having intracellular gas vesicles, which was previously thought to enable blooms to float. The results of the present study could have applications for human health, since many sulfated polysaccharides have antiviral, antitumor or anti-inflammatory properties, and similar genes are found in many cyanobacteria. In addition, these findings could be useful for controlling toxic cyanobacterial blooms, which are becoming increasingly problematic for society.


Assuntos
Eutrofização/fisiologia , Polissacarídeos Bacterianos , Sulfatos , Synechocystis , Polissacarídeos Bacterianos/biossíntese , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/metabolismo , Sulfatos/química , Sulfatos/metabolismo , Synechocystis/metabolismo , Synechocystis/fisiologia
5.
Proc Natl Acad Sci U S A ; 117(27): 15573-15580, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32571944

RESUMO

Cyanobacteriochromes (CBCRs) are small, bistable linear tetrapyrrole (bilin)-binding light sensors which are typically found as modular components in multidomain cyanobacterial signaling proteins. The CBCR family has been categorized into many lineages that roughly correlate with their spectral diversity, but CBCRs possessing a conserved DXCF motif are found in multiple lineages. DXCF CBCRs typically possess two conserved Cys residues: a first Cys that remains ligated to the bilin chromophore and a second Cys found in the DXCF motif. The second Cys often forms a second thioether linkage, providing a mechanism to sense blue and violet light. DXCF CBCRs have been described with blue/green, blue/orange, blue/teal, and green/teal photocycles, and the molecular basis for some of this spectral diversity has been well established. We here characterize AM1_1499g1, an atypical DXCF CBCR that lacks the second cysteine residue and exhibits an orange/green photocycle. Based on prior studies of CBCR spectral tuning, we have successfully engineered seven AM1_1499g1 variants that exhibit robust yellow/teal, green/teal, blue/teal, orange/yellow, yellow/green, green/green, and blue/green photocycles. The remarkable spectral diversity generated by modification of a single CBCR provides a good template for multiplexing synthetic photobiology systems within the same cellular context, thereby bypassing the time-consuming empirical optimization process needed for multiple probes with different protein scaffolds.


Assuntos
Proteínas de Bactérias/metabolismo , Evolução Molecular , Luz , Fotorreceptores Microbianos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/efeitos da radiação , Cor , Cianobactérias/genética , Cianobactérias/metabolismo , Cianobactérias/efeitos da radiação , Mutagênese Sítio-Dirigida , Nostoc/genética , Nostoc/metabolismo , Nostoc/efeitos da radiação , Fotobiologia/métodos , Fotorreceptores Microbianos/efeitos da radiação , Biologia Sintética/métodos , Tetrapirróis/metabolismo
6.
J Gen Appl Microbiol ; 66(2): 147-152, 2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32224605

RESUMO

Second messenger molecules are crucial components of environmental signaling systems to integrate multiple inputs and elicit physiological responses. Among various kinds of second messengers, cyclic nucleotides cAMP and cyclic di-GMP (c-di-GMP) play pivotal roles in bacterial environmental responses. However, how these signaling systems are interconnected for a concerted regulation of cellular physiology remains elusive. In a thermophilic cyanobacterium Thermosynechococcus vulcanus strain RKN, incident light color is sensed by cyanobacteriochrome photoreceptors to transduce the light information to the levels of c-di-GMP, which induces cellular aggregation probably via cellulose synthase activation. Herein, we identified that Tlr0485, which is composed of a cGMP-specific phosphodiesterases, adenylate cyclases, and FhlA (GAF) domain and an HD-GYP domain, is a cAMP-activated c-di-GMP phosphodiesterase. We also show biochemical evidence that the two class-III nucleotide cyclases, Cya1 and Cya2, are both adenylate cyclases to produce cAMP in T. vulcanus. The prevalence of cAMP-activated c-di-GMP phosphodiesterase genes in cyanobacterial genomes suggests that the direct crosstalk between cAMP and c-di-GMP signaling systems may be crucial for cyanobacterial environmental responses.


Assuntos
3',5'-GMP Cíclico Fosfodiesterases/metabolismo , Proteínas de Bactérias/metabolismo , AMP Cíclico/metabolismo , GMP Cíclico/análogos & derivados , Sistemas do Segundo Mensageiro , 3',5'-GMP Cíclico Fosfodiesterases/genética , Adenilil Ciclases/genética , Adenilil Ciclases/metabolismo , Proteínas de Bactérias/genética , Cromatografia Líquida de Alta Pressão , GMP Cíclico/metabolismo , Eletroforese em Gel de Poliacrilamida , Mutação , Domínios Proteicos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Thermosynechococcus/enzimologia , Thermosynechococcus/genética
7.
iScience ; 23(3): 100936, 2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32146329

RESUMO

Cyanobacteriochrome (CBCRs) photoreceptors show various photochemical properties, but their ecophysiological functions remain elusive. Here, we report that the blue/green CBCRs SesA/B/C can serve as physiological sensors of cell density. Because cyanobacterial cells show lower transmittance of blue light than green light, higher cell density gives more green-light-enriched irradiance to cells. The cell-density-dependent suppression of cell aggregation under blue-/green-mixed light and white light conditions support this idea. Such a sensing mechanism may provide information about the cell position in cyanobacterial mats in hot springs, the natural habitat of Thermosynechococcus. This cell-position-dependent SesA/B/C-mediated regulation of cellular sessility (aggregation) might be ecophysiologically essential for the reorganization and growth of phototrophic mats. We also report that the green-light-induced dispersion of cell aggregates requires red-light-driven photosynthesis. Blue/green CBCRs might work as shade detectors in a different niche than red/far-red phytochromes, which may be why CBCRs have evolved in cyanobacteria.

8.
Sci Rep ; 8(1): 5338, 2018 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-29593349

RESUMO

Cyclic diguanylate (c-di-GMP) is a bacterial second messenger involved in sessile/motile lifestyle transitions. We previously reported that c-di-GMP is a crucial inducer of cell aggregation of the cyanobacterium Thermosynechococcus vulcanus. The three cooperating cyanobacteriochrome photoreceptors (SesA/B/C) regulate cell aggregation in a light color-dependent manner by synthesizing/degrading c-di-GMP. Although a variety of c-di-GMP signaling proteins are encoded in cyanobacterial genomes, how c-di-GMP signaling networks are organized remains elusive. Here we experimentally demonstrate that the cellulose synthase Tll0007, which is essential for cell aggregation, binds c-di-GMP although the affinity is low (Kd = 63.9 ± 5.1 µM). We also show that SesA-the main trigger of cell aggregation-is subject to strict product feedback inhibition (IC50 = 1.07 ± 0.13 µM). These results suggest that SesA-produced c-di-GMP may not directly bind to Tll0007. We therefore systematically analyzed all 10 of the genes encoding proteins containing a c-di-GMP synthesis/degradation domain. We identified Tlr1612, harboring both domains, as the major repressor of cell aggregation under the repressing teal-green light irradiation. tlr1612 acts downstream of sesA and is not regulated transcriptionally by light color, suggesting that Tlr1612 may be involved in c-di-GMP amplification in the signaling cascade. Post-transcriptional control is likely crucial for the light-regulated c-di-GMP signaling.


Assuntos
Cianobactérias/fisiologia , GMP Cíclico/análogos & derivados , Glucosiltransferases/metabolismo , Transdução de Sinais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , GMP Cíclico/metabolismo , Regulação Bacteriana da Expressão Gênica , Glucosiltransferases/química , Modelos Biológicos , Transcrição Gênica
9.
J Biol Chem ; 293(5): 1713-1727, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29229775

RESUMO

Cyanobacteriochromes (CBCRs) are linear tetrapyrrole-binding photoreceptors that sense a wide range of wavelengths from ultraviolet to far-red. The primary photoreaction in these reactions is a Z/E isomerization of the double bond between rings C and D. After this isomerization, various color-tuning events establish distinct spectral properties of the CBCRs. Among the various CBCRs, the DXCF CBCR lineage is widely distributed among cyanobacteria. Because the DXCF CBCRs from the cyanobacterium Acaryochloris marina vary widely in sequence, we focused on these CBCRs in this study. We identified seven DXCF CBCRs in A. marina and analyzed them after isolation from Escherichia coli that produces phycocyanobilin, a main chromophore for the CBCRs. We found that six of these CBCRs covalently bound a chromophore and exhibited variable properties, including blue/green, blue/teal, green/teal, and blue/orange reversible photoconversions. Notably, one CBCR, AM1_1870g4, displayed unidirectional photoconversion in response to blue-light illumination, with a rapid dark reversion that was temperature-dependent. Furthermore, the photoconversion took place without Z/E isomerization. This observation indicated that AM1_1870g4 likely functions as a blue-light power sensor, whereas typical CBCRs reversibly sense two light qualities. We also found that AM1_1870g4 possesses a GDCF motif in which the Asp residue is swapped with the next Gly residue within the DXCF motif. Site-directed mutagenesis revealed that this swap is essential for the light power-sensing function of AM1_1870g4. This is the first report of a blue-light power sensor from the CBCR superfamily and of photoperception without Z/E isomerization among the bilin-based photoreceptors.


Assuntos
Proteínas de Bactérias/química , Cianobactérias/química , Luz , Ficocianina/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cianobactérias/genética , Cianobactérias/metabolismo , Ficocianina/genética , Ficocianina/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
10.
Photochem Photobiol ; 93(3): 681-691, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28500699

RESUMO

Cyanobacteriochromes (CBCRs) are photoreceptors that bind to a linear tetrapyrrole within a conserved cGMP-phosphodiesterase/adenylate cyclase/FhlA (GAF) domain and exhibit reversible photoconversion. Red/green-type CBCR GAF domains that photoconvert between red- (Pr) and green-absorbing (Pg) forms occur widely in various cyanobacteria. A putative phototaxis regulator, AnPixJ, contains multiple red/green-type CBCR GAF domains. We previously reported that AnPixJ's second domain (AnPixJg2) but not its fourth domain (AnPixJg4) shows red/green reversible photoconversion. Herein, we found that AnPixJg4 showed Pr-to-Pg photoconversion and rapid Pg-to-Pr dark reversion, whereas AnPixJg2 showed a barely detectable dark reversion. Site-directed mutagenesis revealed the involvement of six residues in Pg stability. Replacement at the Leu294/Ile660 positions of AnPixJg2/AnPixJg4 showed the highest influence on dark reversion kinetics. AnPixJg2_DR6, wherein the six residues of AnPixJg2 were entirely replaced with those of AnPixJg4, showed a 300-fold faster dark reversion than that of the wild type. We constructed chimeric proteins by fusing the GAF domains with adenylate cyclase catalytic regions, such as AnPixJg2-AC, AnPixJg4-AC and AnPixJg2_DR6-AC. We detected successful enzymatic activation under red light for both AnPixJg2-AC and AnPixJg2_DR6-AC, and repression under green light for AnPixJg2-AC and under dark incubation for AnPixJg2_DR6-AC. These results provide platforms to develop cAMP synthetic optogenetic tools.


Assuntos
Proteínas de Bactérias/química , Cianobactérias/metabolismo , AMP Cíclico/biossíntese , Luz , Fotorreceptores Microbianos/metabolismo , Sequência de Aminoácidos , Escuridão , Cinética , Homologia de Sequência de Aminoácidos
11.
Biochemistry ; 55(50): 6981-6995, 2016 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-27935696

RESUMO

Cyanobacteriochromes (CBCRs) are cyanobacterial photoreceptors that sense near-ultraviolet to far-red light. Like the distantly related phytochromes, all CBCRs reported to date have a conserved Cys residue (the "canonical Cys" or "first Cys") that forms a thioether linkage to C31 of the linear tetrapyrrole (bilin) chromophore. Detection of ultraviolet, violet, and blue light is performed by at least three subfamilies of two-Cys CBCRs that require both the first Cys and a second Cys that forms a second covalent linkage to C10 of the bilin. In the well-characterized DXCF subfamily, the second Cys is part of a conserved Asp-Xaa-Cys-Phe motif. We here report novel CBCRs lacking the first Cys but retaining the DXCF Cys as part of a conserved Asp-Xaa-Cys-Ile-Pro (DXCIP) motif. Phylogenetic analysis demonstrates that DXCIP CBCRs are a sister to a lineage of DXCF CBCR domains from phototaxis sensors. Three such DXCIP CBCR domains (cce_4193g1, Cyan8802_2776g1, and JSC1_24240) were characterized after recombinant expression in Escherichia coli engineered to produce phycocyanobilin. All three covalently bound bilin and showed unidirectional photoconversion in response to green light. Spectra of acid-denatured proteins in the dark-adapted state do not correspond to those of known bilins. One DXCIP CBCR, cce_4193g1, exhibited very rapid dark reversion consistent with a function as a power sensor. However, Cyan8802_2776g1 exhibited slower dark reversion and would not have such a function. The full-length cce_4193 protein also possesses a DXCF CBCR GAF domain (cce_4193g2) with a covalently bound phycoviolobilin chromophore and a blue/green photocycle. Our studies indicate that CBCRs need not contain the canonical Cys residue to function as photochromic light sensors and that phototaxis proteins containing DXCIP CBCRs may potentially perceive both light quality and light intensity.


Assuntos
Cianobactérias/metabolismo , Cisteína/química , Luz , Fotorreceptores Microbianos/química , Fitocromo/química , Evolução Molecular , Filogenia
12.
Plant Cell ; 28(3): 616-28, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26941092

RESUMO

The absorption of visible light in aquatic environments has led to the common assumption that aquatic organisms sense and adapt to penetrative blue/green light wavelengths but show little or no response to the more attenuated red/far-red wavelengths. Here, we show that two marine diatom species, Phaeodactylum tricornutum and Thalassiosira pseudonana, possess a bona fide red/far-red light sensing phytochrome (DPH) that uses biliverdin as a chromophore and displays accentuated red-shifted absorbance peaks compared with other characterized plant and algal phytochromes. Exposure to both red and far-red light causes changes in gene expression in P. tricornutum, and the responses to far-red light disappear in DPH knockout cells, demonstrating that P. tricornutum DPH mediates far-red light signaling. The identification of DPH genes in diverse diatom species widely distributed along the water column further emphasizes the ecological significance of far-red light sensing, raising questions about the sources of far-red light. Our analyses indicate that, although far-red wavelengths from sunlight are only detectable at the ocean surface, chlorophyll fluorescence and Raman scattering can generate red/far-red photons in deeper layers. This study opens up novel perspectives on phytochrome-mediated far-red light signaling in the ocean and on the light sensing and adaptive capabilities of marine phototrophs.


Assuntos
Diatomáceas/fisiologia , Transdução de Sinal Luminoso/efeitos da radiação , Fitocromo/efeitos da radiação , Plantas/efeitos da radiação , Adaptação Fisiológica , Clorofila/metabolismo , Diatomáceas/efeitos da radiação , Oceanos e Mares , Análise Espectral Raman , Luz Solar
13.
Proc Natl Acad Sci U S A ; 112(26): 8082-7, 2015 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-26080423

RESUMO

Cyanobacteriochromes (CBCRs) are cyanobacterial photoreceptors that have diverse spectral properties and domain compositions. Although large numbers of CBCR genes exist in cyanobacterial genomes, no studies have assessed whether multiple CBCRs work together. We recently showed that the diguanylate cyclase (DGC) activity of the CBCR SesA from Thermosynechococcus elongatus is activated by blue-light irradiation and that, when irradiated, SesA, via its product cyclic dimeric GMP (c-di-GMP), induces aggregation of Thermosynechococcus vulcanus cells at a temperature that is suboptimum for single-cell viability. For this report, we first characterize the photobiochemical properties of two additional CBCRs, SesB and SesC. Blue/teal light-responsive SesB has only c-di-GMP phosphodiesterase (PDE) activity, which is up-regulated by teal light and GTP. Blue/green light-responsive SesC has DGC and PDE activities. Its DGC activity is enhanced by blue light, whereas its PDE activity is enhanced by green light. A ΔsesB mutant cannot suppress cell aggregation under teal-green light. A ΔsesC mutant shows a less sensitive cell-aggregation response to ambient light. ΔsesA/ΔsesB/ΔsesC shows partial cell aggregation, which is accompanied by the loss of color dependency, implying that a nonphotoresponsive DGC(s) producing c-di-GMP can also induce the aggregation. The results suggest that SesB enhances the light color dependency of cell aggregation by degrading c-di-GMP, is particularly effective under teal light, and, therefore, seems to counteract the induction of cell aggregation by SesA. In addition, SesC seems to improve signaling specificity as an auxiliary backup to SesA/SesB activities. The coordinated action of these three CBCRs highlights why so many different CBCRs exist.


Assuntos
Cor , GMP Cíclico/análogos & derivados , Luz , Fotorreceptores Microbianos/fisiologia , Transdução de Sinais , Synechococcus/fisiologia , GMP Cíclico/metabolismo , Mutação Puntual , Synechococcus/genética
14.
Sci Rep ; 5: 7950, 2015 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-25609645

RESUMO

Cyanobacteriochromes (CBCRs) are linear tetrapyrrole-binding photoreceptors in cyanobacteria that absorb visible and near-ultraviolet light. CBCRs are divided into two types based on the type of chromophore they contain: phycocyanobilin (PCB) or phycoviolobilin (PVB). PCB-binding CBCRs reversibly photoconvert at relatively long wavelengths, i.e., the blue-to-red region, whereas PVB-binding CBCRs reversibly photoconvert at shorter wavelengths, i.e., the near-ultraviolet to green region. Notably, prior to this report, CBCRs containing biliverdin (BV), which absorbs at longer wavelengths than do PCB and PVB, have not been found. Herein, we report that the typical red/green CBCR AM1_1557 from the chlorophyll d-bearing cyanobacterium Acaryochloris marina can bind BV almost comparable to PCB. This BV-bound holoprotein reversibly photoconverts between a far red light-absorbing form (Pfr, λmax = 697 nm) and an orange light-absorbing form (Po, λmax = 622 nm). At room temperature, Pfr fluoresces with a maximum at 730 nm. These spectral features are red-shifted by 48~77 nm compared with those of the PCB-bound domain. Because the absorbance of chlorophyll d is red-shifted compared with that of chlorophyll a, the BV-bound AM1_1557 may be a physiologically relevant feature of A. marina and is potentially useful as an optogenetic switch and/or fluorescence imager.


Assuntos
Biliverdina/metabolismo , Clorofila/metabolismo , Ficobilinas/metabolismo , Ficocianina/metabolismo , Biliverdina/química , Clorofila/química , Cianobactérias/metabolismo , Luz , Fotorreceptores Microbianos/química , Fotorreceptores Microbianos/metabolismo , Ficobilinas/química , Ficocianina/química , Ligação Proteica
15.
Biochemistry ; 53(31): 5051-9, 2014 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-25029277

RESUMO

Cyanobacteriochromes (CBCRs) form a large, spectrally diverse family of photoreceptors (linear tetrapyrrole covalently bound via a conserved cysteine) that perceive ultraviolet to red light. The underlying mechanisms are reasonably well understood with, in certain cases, reversible formation of an adduct between a second cysteine and the chromophore accounting, in part, for their spectral diversity. These CBCRs are denoted as dual-Cys CBCRs, and most such CBCRs had been shown to reversibly absorb blue and green light. Herein, we report the structural and mechanistic characterization of a new type of dual-Cys CBCR, AM1_1186, which exhibits reversible photoconversion between a red-absorbing dark state (λmax = 641 nm) and a blue-absorbing photoproduct (λmax = 416 nm). The wavelength separation of AM1_1186 photoconversion is the largest found to date for a CBCR. In addition to one well-conserved cysteine responsible for covalent incorporation of the chromophore into the apoprotein, AM1_1186 contains a second cysteine in a unique position of its photosensory domain, which would be more properly classified as a red/green CBCR according to its sequence. Carboxyamidomethylation and mutagenesis of the cysteines revealed that the second cysteine forms an adduct with the tetrapyrrole, the phycocyanobilin, that can be reversed under blue light. The proline immediately upstream of this cysteine appears to determine the rate at which the cysteinylation following photoexcitation of the dark state chromophore can occur. We propose a possible reaction scheme and color-tuning mechanism for AM1_1186 in terms of its structure and its place in a phylogenetic tree.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cianobactérias/metabolismo , Fotorreceptores Microbianos/química , Fotorreceptores Microbianos/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Cianobactérias/genética , Cisteína/química , Evolução Molecular , Modelos Moleculares , Dados de Sequência Molecular , Processos Fotoquímicos , Fotorreceptores Microbianos/genética , Filogenia , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos
16.
J Biol Chem ; 289(36): 24801-9, 2014 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-25059661

RESUMO

Cyanobacteria have unique photoreceptors, cyanobacteriochromes, that show diverse spectral properties to sense near-UV/visible lights. Certain cyanobacteriochromes have been shown to regulate cellular phototaxis or chromatic acclimation of photosynthetic pigments. Some cyanobacteriochromes have output domains involved in bacterial signaling using a second messenger cyclic dimeric GMP (c-di-GMP), but its role in cyanobacteria remains elusive. Here, we characterize the recombinant Tlr0924 from a thermophilic cyanobacterium Thermosynechococcus elongatus, which was expressed in a cyanobacterial system. The protein reversibly photoconverts between blue- and green-absorbing forms, which is consistent with the protein prepared from Escherichia coli, and has diguanylate cyclase activity, which is enhanced 38-fold by blue light compared with green light. Therefore, Tlr0924 is a blue light-activated diguanylate cyclase. The protein's relatively low affinity (10.5 mM) for Mg(2+), which is essential for diguanylate cyclase activity, suggests that Mg(2+) might also regulate c-di-GMP signaling. Finally, we show that blue light irradiation under low temperature is responsible for Thermosynechococcus vulcanus cell aggregation, which is abolished when tlr0924 is disrupted, suggesting that Tlr0924 mediates blue light-induced cell aggregation by producing c-di-GMP. Given our results, we propose the name "sesA (sessility-A)" for tlr0924. This is the first report for cyanobacteriochrome-dependent regulation of a sessile/planktonic lifestyle in cyanobacteria via c-di-GMP.


Assuntos
Proteínas de Bactérias/metabolismo , Cianobactérias/metabolismo , Proteínas de Escherichia coli/metabolismo , Fósforo-Oxigênio Liases/metabolismo , Fotorreceptores Microbianos/metabolismo , Proteínas de Bactérias/genética , Ligação Competitiva , Cianobactérias/citologia , Cianobactérias/genética , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Eletroforese em Gel de Poliacrilamida , Ativação Enzimática/efeitos da radiação , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Luz , Magnésio/metabolismo , Magnésio/farmacologia , Modelos Biológicos , Mutação , Fósforo-Oxigênio Liases/genética , Fotorreceptores Microbianos/genética , Ligação Proteica , Proteínas Recombinantes/metabolismo , Transdução de Sinais/efeitos dos fármacos , Espectrofotometria , Temperatura
17.
Biochemistry ; 51(14): 3050-8, 2012 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-22439675

RESUMO

Cyanobacteriochromes are a spectrally diverse photoreceptor family that binds a bilin chromophore. For some cyanobacteriochromes, in addition to the widely conserved cysteine to anchor the chromophore, its ligation with a second cysteine is responsible for a remarkable blue shift. Herein, we report a newly discovered cyanobacteriochrome Tlr1999 exhibiting reversible photoconversion between a blue-absorbing form at 418 nm (P418) and a teal-absorbing form at 498 nm (P498). Acidic denaturation suggests that P418 harbors C15-Z phycoviolobilin, whereas P498 harbors C15-E phycoviolobilin. When treated with iodoacetamide, which irreversibly modifies thiol groups, P418 is slowly converted to a green-absorbing photoinactive form denoted P552. The absorption spectrum of P498 appears to be unaffected by iodoacetamide, but when iodoacetamide modified, it is photoconverted to P552. These results suggest that a covalent bond exists between the second Cys and the phycoviolobilin in P418 but not in P498. Subsequent treatment with dithiothreitol converts P552 into P418, whereas dithiothreitol reduces P498 to yield P420, a photoinactive form. Site-directed mutagenesis shows that the second Cys is essential for assembly of the photoactive holoprotein and that the photoactivity of this inert mutant is partially rescued by ß-mercaptoethanol. These results suggest that the covalent attachment and detachment of a thiol, although not necessarily that of the second Cys, is critical for the reversible spectral blue shift and the complete photocycle. We propose a thiol-based photocycle, in which the thiol-modified P552 and P420 are intermediate-like forms.


Assuntos
Proteínas de Bactérias/química , Cianobactérias/metabolismo , Luz , Fotorreceptores Microbianos/química , Compostos de Sulfidrila/química , Proteínas de Bactérias/metabolismo , Mutagênese Sítio-Dirigida , Fotorreceptores Microbianos/metabolismo , Compostos de Sulfidrila/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...