Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 12(10): 6255-6264, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35424533

RESUMO

Optical properties of semiconductor quantum dots (QDs) can be tuned by doping with transition metal ions. In this study, water-soluble CdSe/ZnS:Mn/ZnS QDs with the core/shell/shell structure were synthesized through a hydrothermal method, in which the surface of the CdSe core was coated with a ZnS:Mn shell and ZnS capping shell. Herein, the CdSe core QDs were prepared first and then doped with Mn2+; therefore, the QD size and doping level could be controlled independently and interference from the self-purifying effect could be avoided. When CdSe cores with diameters less than 1.9 nm were used, Mn-related photoluminescence (PL) was observed as the main PL band, whereas the band-edge PL was mainly observed when larger CdSe cores were used. Furthermore, using ZnS:Cu as the doping shell layer, CdSe/ZnS:Cu/ZnS and ZnSe/ZnS:Cu/ZnS nanoparticles were successfully synthesized, and Cu-related PL was clearly observed. These results indicate that the core/shell/shell QD structure with doping in the shell layer is a versatile method for synthesizing doped QDs.

2.
Chem Sci ; 12(30): 10354-10361, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34377421

RESUMO

The geometry in self-assembled superlattices of colloidal quantum dots (QDs) strongly affects their optoelectronic properties and is thus of critical importance for applications in optoelectronic devices. Here, we achieve the selective control of the geometry of colloidal quasi-spherical PbS QDs in highly-ordered two and three dimensional superlattices: Disordered, simple cubic (sc), and face-centered cubic (fcc). Gel permeation chromatography (GPC), not based on size-exclusion effects, is developed to quantitatively and continuously control the ligand coverage of PbS QDs. The obtained QDs can retain their high stability and photoluminescence on account of the chemically soft removal of the ligands by GPC. With increasing ligand coverage, the geometry of the self-assembled superlattices by solution-casting of the GPC-processed PbS QDs changed from disordered, sc to fcc because of the finely controlled ligand coverage and anisotropy on QD surfaces. Importantly, the highly-ordered sc supercrystal usually displays unique superfluorescence and is expected to show high charge transporting properties, but it has not yet been achieved for colloidal quasi-spherical QDs. It is firstly accessible by fine-tuning the QD ligand density using the GPC method here. This selective formation of different geometric superlattices based on GPC promises applications of such colloidal quasi-spherical QDs in high-performance optoelectronic devices.

3.
Nat Commun ; 11(1): 5471, 2020 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33122641

RESUMO

In quantum dot superlattices, wherein quantum dots are periodically arranged, electronic states between adjacent quantum dots are coupled by quantum resonance, which arises from the short-range electronic coupling of wave functions, and thus the formation of minibands is expected. Quantum dot superlattices have the potential to be key materials for new optoelectronic devices, such as highly efficient solar cells and photodetectors. Herein, we report the fabrication of CdTe quantum dot superlattices via the layer-by-layer assembly of positively charged polyelectrolytes and negatively charged CdTe quantum dots. We can thus control the dimension of the quantum resonance by independently changing the distances between quantum dots in the stacking (out-of-plane) and in-plane directions. Furthermore, we experimentally verify the miniband formation by measuring the excitation energy dependence of the photoluminescence spectra and detection energy dependence of the photoluminescence excitation spectra.

4.
ACS Macro Lett ; 8(6): 634-638, 2019 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-35619537

RESUMO

We here present a direct link between the reaction mechanisms for the ring-expansion "vinyl" polymerization system and atomic force microscopy (AFM) observations. The brush-modification clearly discriminates the desired cyclic species with the contour lengths (Lc) of 28-132 nm and molar masses (MAFM) of 60.2-283 kg mol-1 from the other linear ones. The 293 polymer blushes observed in a 1.0 µm × 1.0 µm AFM image are individually characterized, eventually providing clear answers about the mechanisms of this rare polymerization system, which include ring-expansion vinyl polymerizations to generate cyclic polymers, fusions of the generated cycles to form multimers, and their scission to form linear or ring-opened species. The relationship between the molecular chain lengths and the cyclic versus linear morphologies is highlighted.

5.
Chem Sci ; 10(40): 9203-9208, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-32015800

RESUMO

Intermolecular electron-hole coupling in organic semiconductor excited states plays important roles in organic light-emitting diodes and organic photovoltaics, and the distance of the coupling is typically only on the order of a few nanometers. Here, we report exceptionally long-distance coupled exciplex emissions between electron-donor and electron-acceptor molecules even with a 70 nm-thick spacer layer. Donor/spacer (∼70 nm)/acceptor-type stacked films showed a low-energy band emission, which is not ascribed to the emission of the donor, spacer, and acceptor themselves, but well corresponds to the energy difference between the highest occupied molecular orbital of the donor and the lowest unoccupied molecular orbital of the acceptor. Delayed transient photoluminescence (PL) and electroluminescence (EL) decays and PL quenching by oxygen at the low-energy band were observed and are consistent with the characteristics of the exciplex species.

6.
ACS Appl Mater Interfaces ; 10(16): 13985-13998, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29608060

RESUMO

Surface modifier-free hybridization of ZrO2 nanoparticles (NPs) with epoxy-based polymers is demonstrated for the first time to afford highly transparent and refractive bulk materials. This is achieved by a unique and versatile hybridization via the one-pot direct phase transfer of ZrO2 NPs from water to epoxy monomers without any aggregation followed by curing with anhydride. Three types of representative epoxy monomers, bisphenol A diglycidyl ether (BADGE), 3,4-epoxycyclohexylmethyl-3',4'-epoxycyclohexane carboxylate (CEL), and 1,3,5-tris(3-(oxiran-2-yl)propyl)-1,3,5-triazinane-2,4,6-trione (TEPIC), are used to produce transparent viscous dispersions. The resulting ZrO2 NPs are thoroughly characterized using dynamic light scattering (DLS), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR), and solid-state 13C CP/MAS NMR measurements. The results from DLS and TEM analyses indicate nanodispersion of ZrO2 into epoxy monomers as a continuous medium. A surface modification mechanism and the binding fashion during phase transfer are proposed based on the FT-IR and solid-state 13C CP/MAS NMR measurements. Epoxy-based hybrid materials with high transparency and refractive index are successfully fabricated by heat curing or polymerizing a mixture of monomers containing epoxy-functionalized ZrO2 NPs and methylhexahydrophthalic anhydride in the presence of a phosphoric catalyst. The TEM and small-angle X-ray scattering measurements of the hybrids show a nanodispersion of ZrO2 in the epoxy networks. The refractive index at 594 nm ( n594) increases up to 1.765 for BADGE-based hybrids, 1.667 for CEL-based hybrids, and 1.693 for TEPIC-based hybrids. Their refractive indices and Abbe's numbers are quantitatively described by the Lorentz-Lorenz effective medium expansion theory. Their transmissivity is also reasonably explained using Fresnel refraction, Rayleigh scattering, and the Lambert-Beer theories. This surface modifier-free hybridization provides a versatile, fascinating, and promising method for synthesizing a variety of epoxy-based hybrid materials.

7.
Polymers (Basel) ; 10(6)2018 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-30966672

RESUMO

Macrocyclic polymers present an important class of macromolecules, displaying the reduced radius of gyration or impossibility to entangle. A rare approach for their synthesis is the ring expansion-controlled radical "vinyl" polymerization, starting from a cyclic alkoxyamine. We here describe ring-expansion radical crossover reactions of cyclic alkoxyamines which run in parallel to chain-propagation reactions in the polymerization system. The radical crossover reactions extensively occurred at 105⁻125 °C, eventually producing high molecular weight polymers with multiple inherent dynamic covalent bonds (NOC bonds). A subsequent ring-contraction radical crossover reaction and the second ring-expansion radical crossover reaction are also described. The major products for the respective three stages were shown to possess cyclic morphologies by the molecular weight profiles and the residual ratios for the NOC bonds (φ in %). In particular, the high φ values ranging from ca. 80% to 98% were achieved for this cyclic alkoxyamine system. This result verifies the high availability of this system as a tool demonstrating the ring-expansion "vinyl" polymerization that allows them to produce macrocyclic polymers via a one-step vinyl polymerization.

8.
Biomacromolecules ; 15(12): 4509-19, 2014 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-25329608

RESUMO

We now describe the synthesis of a new family of oligosaccharide-conjugated functional molecules, which act as chain transfer agents (CTAs) for the reversible addition-fragmentation chain transfer (RAFT) polymerization. The synthesis was started from the catalyst-free direct N-glycosyl reaction of 5-azidopentylamine onto maltopentaose (Mal5) in dry methanol at room temperature and subsequent N-protected reaction with acetic anhydride, producing a stable oligosaccharide-building block, such as Mal5 with an azidopentyl group (Mal5-N3). The azido group was hydrogenated using platinum dioxide (PtO2) as a catalyst to give Mal5 with aminopentyl group (Mal5-NH2), which was then reacted with CTA molecules bearing activated ester moieties. These reactions produced Mal5-modified macro-CTAs (Mal5-CTAs, 1), which were used for the RAFT polymerizations of styrene (St) and methyl methacrylate (MMA) in DMF. The polymerizations were performed using the [M]0/[1]0 values ranging from 50 to 600, affording the Mal5-hybrid amphiphilic block copolymers (BCPs), such as Mal5-polystyrene (2) and Mal5-poly(methyl methacrylate) (3), with a quantitative end-functionality and the controlled molecular weights between 4310 and 20 300 g mol(-1). The small-angle X-ray scattering (SAXS) measurements were accomplished for 2 and 3 to ensure their abilities to form phase separated structures in their bulk states with the increasing temperatures from 30 to 190 °C. The featured results were observed for 2 (ϕMal5 = 0.14) and 3 (ϕMal5 = 0.16) at temperatures above 100 °C, where ϕMal5 denotes the volume fraction of the Mal5 unit in the BCP sample. For both BCP samples, the primary scattering peaks q* were clearly observed together with the higher-ordered scattering peaks √2q* and √3q*. Thus, these Mal5-hybrid amphiphilic BCP samples have a body centered cubic (BCC) phase morphology. The domain spacing (d) values of the BCC morphology for 2 (ϕMal5 = 0.14) and 3 (ϕMal5 = 0.16) were 10.4 and 9.55 nm, respectively, which were determined using Bragg's relation (d = 2π/q*). The present RAFT agents were shown to eventually provide the phase separated structural polymeric materials in which 5.4 nm bioresource-spherical domains were periodically arrayed at the interval of about 10 nm.


Assuntos
Nanoestruturas/química , Oligossacarídeos/química , Polímeros/química , Peso Molecular , Polimerização , Polimetil Metacrilato/química , Espalhamento a Baixo Ângulo , Estireno/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...