Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38948816

RESUMO

Understanding the phenotypic consequences of naturally occurring genetic changes, as well as their impact on fitness, is fundamental to understanding how organisms adapt to an environment. This is critical when genetic variants have pleiotropic effects, as determining how each phenotype impacted by a gene contributes to fitness is essential to understand how and why traits have evolved. A striking example of a pleiotropic gene contributing to trait evolution is the oca2 gene, coding mutations in which underlie albinism and reductions of sleep in the blind Mexican cavefish, Astyanax mexicanus. Here, we characterize the effects of mutations in the oca2 gene on larval prey capture. We find that when conspecific surface fish with engineered mutations in the oca2 allele are hunting, they use cave-like, wide angle strikes to capture prey. However, unlike cavefish or surface fish in the dark, which rely on lateral line mediated hunting, oca2 mutant surface fish use vision when striking at prey from wide angles. Finally, we find that while oca2 mutant surface fish do not outcompete pigmented surface siblings in the dark, pigmented fish outcompete albino fish in the light. This raises the possibility that albinism is detrimental to larval feeding in a surface-like lighted environment, but does not have negative consequences for fish in cave-like, dark environments. Together, these results demonstrate that oca2 plays a role in larval feeding behavior in A. mexicanus. Further, they expand our understanding of the pleiotropic phenotypic consequences of oca2 in cavefish evolution.

2.
G3 (Bethesda) ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38805182

RESUMO

The Przewalski's horse (Equus ferus przewalskii) is an endangered equid native to the steppes of central Asia. After becoming extinct in the wild multiple conservation efforts convened to preserve the species, including captive breeding programs, reintroduction and monitoring systems, protected lands, and cloning. Availability of a highly contiguous reference genome is essential to support these continued efforts. We used Oxford Nanopore sequencing to produce a scaffold-level 2.5 Gb nuclear assembly and 16,002 bp mitogenome from a captive Przewalski's mare. All assembly drafts were generated from 111 Gb of sequence from a single PromethION R10.4.1 flow cell. The mitogenome contained 37 genes in the standard mammalian configuration and was 99.63% identical to the domestic horse (Equus caballus). The nuclear assembly, EquPr2, contained 2,146 scaffolds with an N50 of 85.1 Mb, 43X mean depth, and BUSCO quality score of 98.92%. EquPr2 successfully improves upon the existing Przewalski's horse reference genome (Burgud), with 25-fold fewer scaffolds, a 166-fold larger N50, and phased pseudohaplotypes. Modified basecalls revealed 79.5% DNA methylation and 2.1% hydroxymethylation globally. Allele-specific methylation analysis between pseudohaplotypes revealed 226 differentially methylated regions (DMRs) in known imprinted genes and loci not previously reported as imprinted. The heterozygosity rate of 0.165% matches previous estimates for the species and compares favorably to other endangered animals. This improved Przewalski's horse assembly will serve as a valuable resource for conservation efforts and comparative genomics investigations.

3.
PLoS One ; 19(5): e0301456, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38718023

RESUMO

The round goby (Neogobius melanostomus) is an invasive benthic fish first introduced to the Laurentian Great Lakes in 1990 that has negatively impacted native fishes through increased competition for food and habitat, aggressive interactions, and egg predation. While complete eradication of the round goby is currently not possible, intensive trapping in designated areas during spawning seasons could potentially protect critical native fish spawning habitats. Baited minnow traps were spaced 10 meters apart in shallow water along a 100-meter stretch of shoreline within the Duluth-Superior Harbor during the round goby breeding period (June to October) with captured round gobies removed from interior traps (N = 10) every 48 hours. These traps were bracketed by two pairs of reference traps deployed weekly for 48 hours, from which round gobies were also tagged and released. The number of round gobies captured in the interior traps declined by 67% compared to reference traps over the course of the study, with extended periods of no captures. The tagged round gobies showed high site affinity, with 82.8% of tagged fish recaptured at the previous release site. The results indicate that even at open water sites, which allow natural migration of round gobies into the area, extensive trapping could reduce local population numbers.


Assuntos
Espécies Introduzidas , Animais , Ecossistema , Densidade Demográfica , Perciformes/fisiologia , Peixes/fisiologia , Lagos
4.
bioRxiv ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38464182

RESUMO

The Przewalski's horse (Equus ferus przewalskii) is an endangered equid native to the steppes of central Asia. After becoming extinct in the wild, multiple conservation efforts convened to preserve the species including captive breeding programs, reintroduction and monitoring systems, protected lands, and cloning. Availability of a highly contiguous reference genome is essential to support these continued efforts. We used Oxford Nanopore sequencing to produce a scaffold-level 2.5 Gb nuclear assembly and 16,002 bp mitogenome from a captive Przewalski's mare. All assembly drafts were generated from 111 Gb of sequence from a single PromethION R10.4.1 flow cell. The mitogenome contained 37 genes in the standard mammalian configuration and was 99.63% identical to the domestic horse (Equus caballus). The nuclear assembly, EquPr2, contained 2,146 scaffolds with an N50 of 85.1 Mb, 43X mean depth, and BUSCO quality score of 98.92%. EquPr2 successfully improves upon the existing Przewalski's horse reference genome (Burgud), with 25-fold fewer scaffolds, a 166-fold larger N50, and phased pseudohaplotypes. Modified basecalls revealed 79.5% DNA methylation and 2.1% hydroxymethylation globally. Allele-specific methylation analysis between pseudohaplotypes revealed 226 differentially methylated regions (DMRs) in known imprinted genes and loci not previously reported as imprinted. The heterozygosity rate of 0.165% matches previous estimates for the species and compares favorably to other endangered animals. This improved Przewalski's horse assembly will serve as a valuable resource for conservation efforts and comparative genomics investigations.

5.
Integr Comp Biol ; 61(3): 814-824, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-33744960

RESUMO

Communication is a social process and usually occurs in a network of signalers and receivers. While social network analysis has received enormous recent attention from animal behaviorists, there have been relatively few attempts to apply these techniques to communication networks. Communication networks have the potential to offer novel insights into social network studies, and yet are especially challenging subjects, largely because of their unique spatiotemporal characteristics. Namely, signals propagate through the environment, often dissociating from the body of the signaler, to influence receiver behavior. The speed of signal propagation and the signal's active space will affect the congruence of communication networks and other types of social network; in extreme cases, the signal may persist and only first be detected long after the signaler has left the area. Other signals move more rapidly and over greater distances than the signaler could possibly move to reach receivers. We discuss the spatial and temporal consequences of signaling in networks and highlight the distinction between the physical location of the signaler and the spread of influence of its signals, the effects of signal modality and receiver sensitivity on communication network properties, the potential for feedbacks between network layers, and approaches to analyzing spatial and temporal change in communication networks in conjunction with other network layers.


Assuntos
Comunicação Animal , Animais , Análise Espaço-Temporal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...