Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37162906

RESUMO

Graphene - an atomically thin layer of carbon atoms arranged in a hexagonal lattice - has gained interest as a bioscaffold for tissue engineering due to its exceptional mechanical, electrical, and thermal properties. Graphene's structure and properties are tightly coupled to synthesis and processing conditions, yet their influence on biomolecular interactions at the graphene-cell interface remains unclear. In this study, C2C12 cells were grown on graphene bioscaffolds with specific structure-property- processing-performance (SP3) correlations. Bioscaffolds were prepared using three different methods - chemical vapor deposition (CVD), sublimation of silicon carbide (SiC), and printing of liquid phase exfoliated graphene. To investigate the biocompatibility of each scaffold, cellular morphology and gene expression patterns were investigated using the bipotential mouse C2C12 cell line. Using a combination of fluorescence microscopy and qRT-PCR, we demonstrate that graphene production methods determine the structural and mechanical properties of the resulting bioscaffold, which in turn determine cell morphology, gene expression patterns, and cell differentiation fate. Therefore, production methods and resultant structure and properties of graphene bioscaffolds must be chosen carefully when considering graphene as a bioscaffold for musculoskeletal tissue engineering.

2.
J Vis Exp ; (190)2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36533832

RESUMO

An atomic force microscope (AFM) fundamentally measures the interaction between a nanoscale AFM probe tip and the sample surface. If the force applied by the probe tip and its contact area with the sample can be quantified, it is possible to determine the nanoscale mechanical properties (e.g., elastic or Young's modulus) of the surface being probed. A detailed procedure for performing quantitative AFM cantilever-based nanoindentation experiments is provided here, with representative examples of how the technique can be applied to determine the elastic moduli of a wide variety of sample types, ranging from kPa to GPa. These include live mesenchymal stem cells (MSCs) and nuclei in physiological buffer, resin-embedded dehydrated loblolly pine cross-sections, and Bakken shales of varying composition. Additionally, AFM cantilever-based nanoindentation is used to probe the rupture strength (i.e., breakthrough force) of phospholipid bilayers. Important practical considerations such as method choice and development, probe selection and calibration, region of interest identification, sample heterogeneity, feature size and aspect ratio, tip wear, surface roughness, and data analysis and measurement statistics are discussed to aid proper implementation of the technique. Finally, co-localization of AFM-derived nanomechanical maps with electron microscopy techniques that provide additional information regarding elemental composition is demonstrated.


Assuntos
Fenômenos Mecânicos , Células-Tronco Mesenquimais , Microscopia de Força Atômica/métodos , Módulo de Elasticidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...