Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Evolution ; 75(7): 1681-1698, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34048598

RESUMO

Colonization along ubiquitous gradients of growing season length should require adaptation of phenological traits, driven by natural selection. Although phenology often varies with season length and genetic differentiation in phenological traits sometimes seems adaptive, few studies test whether natural selection is responsible for these patterns. The annual plant Rhinanthus minor is genetically differentiated for phenology across a 1000-m elevational gradient of growing season length in the Canadian Rocky Mountains. We estimated phenotypic selection on five phenological traits for three generations of naturally occurring individuals at 12 sites (n = 10,112), and two generations of genetically and phenotypically more variable transplanted populations at nine of these sites (n = 24,611). Selection was weak for most traits, but consistently favored early flowering across the gradient rather than only under short seasons. There was no evidence that apparent selection favoring early reproduction arose from failure to consider all components of fitness, or variation in other correlated phenological traits. Instead, selection for earlier flowering may be balanced by selection for strong cogradient phenological plasticity that indirectly favors later flowering. However, this probably does not explain the consistency of selection on flowering time across this steep, elevational gradient of growing season length.


Assuntos
Adaptação Fisiológica , Reprodução , Canadá , Flores , Humanos , Plantas , Estações do Ano
2.
New Phytol ; 224(3): 1184-1200, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31225910

RESUMO

Species are commonly distributed along latitudinal and elevational gradients of growing season length to which they might respond via phenotypic plasticity and/or adaptive genetic differentiation. However, the relative contribution of these processes and whether plasticity, if it occurs, facilitates expansion along season-length gradients remain unclear, but are important for predicting species fates during anthropogenic change. We quantified phenological trait variation in the montane annual Rhinanthus minor for three generations at 12 sites across 900 m of elevation in the Canadian Rocky Mountains and conducted a reciprocal transplant experiment for two generations among nine sites. We compared clines and interannual variation of phenological traits between natural and transplanted individuals. Season length declined by c. 37% along our elevational gradient and, as expected, plants emerged, reached first flower and made their first seed in c. 41% fewer growing degree days under shorter growing seasons. Although reciprocal transplants revealed modest genetic differentiation across elevation, trait clines primarily were due to striking co-gradient plasticity that paralleled genetic differentiation. Co-gradient plasticity likely evolved in response to considerable interannual variation in season length across our elevational transect, and should prepare R. minor to make adaptive changes to phenology in response to ongoing climate change predicted for montane environments.


Assuntos
Adaptação Fisiológica , Scrophulariaceae/fisiologia , Estações do Ano , Altitude , Genótipo , Fenótipo , Característica Quantitativa Herdável , Scrophulariaceae/genética , Scrophulariaceae/crescimento & desenvolvimento , Especificidade da Espécie
3.
Science ; 351(6272): 457, 2016 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-26823419

RESUMO

Tredennick et al. criticize one of our statistical analyses and emphasize the low explanatory power of models relating productivity to diversity. These criticisms do not detract from our key findings, including evidence consistent with the unimodal constraint relationship predicted by the humped-back model and evidence of scale sensitivities in the form and strength of the relationship.


Assuntos
Biodiversidade , Pradaria , Desenvolvimento Vegetal
4.
Am J Bot ; 102(7): 1145-59, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26199370

RESUMO

UNLABELLED: • PREMISE OF THE STUDY: Accurate assessments of biodiversity are paramount for understanding ecosystem processes and adaptation to change. Invasive species often contribute substantially to local biodiversity; correctly identifying and distinguishing invaders is thus necessary to assess their potential impacts. We compared the reliability of morphology and molecular sequences to discriminate six putative species of invasive Pilosella hawkweeds (syn. Hieracium, Asteraceae), known for unreliable identifications and historical introgression. We asked (1) which morphological traits dependably discriminate putative species, (2) if genetic clusters supported morphological species, and (3) if novel hybridizations occur in the invaded range.• METHODS: We assessed 33 morphometric characters for their discriminatory power using the randomForest classifier and, using AFLPs, evaluated genetic clustering with the program structure and subsequently with an AMOVA. The strength of the association between morphological and genotypic dissimilarity was assessed with a Mantel test.• KEY RESULTS: Morphometric analyses delimited six species while genetic analyses defined only four clusters. Specifically, we found (1) eight morphological traits could reliably distinguish species, (2) structure suggested strong genetic differentiation but for only four putative species clusters, and (3) genetic data suggest both novel hybridizations and multiple introductions have occurred.• CONCLUSIONS: (1) Traditional floristic techniques may resolve more species than molecular analyses in taxonomic groups subject to introgression. (2) Even within complexes of closely related species, relatively few but highly discerning morphological characters can reliably discriminate species. (3) By clarifying patterns of morphological and genotypic variation of invasive Pilosella, we lay foundations for further ecological study and mitigation.


Assuntos
Asteraceae/classificação , Asteraceae/anatomia & histologia , Asteraceae/genética , Colúmbia Britânica , Análise por Conglomerados , Ecologia , Flores/anatomia & histologia , Flores/classificação , Flores/genética , Variação Genética , Genótipo , Geografia , Hibridização Genética , Espécies Introduzidas , Fenótipo , Reprodutibilidade dos Testes
5.
Science ; 349(6245): 302-5, 2015 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-26185249

RESUMO

The search for predictions of species diversity across environmental gradients has challenged ecologists for decades. The humped-back model (HBM) suggests that plant diversity peaks at intermediate productivity; at low productivity few species can tolerate the environmental stresses, and at high productivity a few highly competitive species dominate. Over time the HBM has become increasingly controversial, and recent studies claim to have refuted it. Here, by using data from coordinated surveys conducted throughout grasslands worldwide and comprising a wide range of site productivities, we provide evidence in support of the HBM pattern at both global and regional extents. The relationships described here provide a foundation for further research into the local, landscape, and historical factors that maintain biodiversity.


Assuntos
Biodiversidade , Pradaria , Desenvolvimento Vegetal , Biomassa , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...