Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 8489, 2018 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-29855484

RESUMO

Heusler alloys exhibiting magnetic and martensitic transitions enable applications like magnetocaloric refrigeration and actuation based on the magnetic shape memory effect. Their outstanding functional properties depend on low hysteresis losses and low actuation fields. These are only achieved if the atomic positions deviate from a tetragonal lattice by periodic displacements. The origin of the so-called modulated structures is the subject of much controversy: They are either explained by phonon softening or adaptive nanotwinning. Here we used large-scale density functional theory calculations on the Ni2MnGa prototype system to demonstrate interaction energy between twin boundaries. Minimizing the interaction energy resulted in the experimentally observed ordered modulations at the atomic scale, it explained that a/b twin boundaries are stacking faults at the mesoscale, and contributed to the macroscopic hysteresis losses. Furthermore, we found that phonon softening paves the transformation path towards the nanotwinned martensite state. This unified both opposing concepts to explain modulated martensite.

2.
Philos Trans A Math Phys Eng Sci ; 374(2074)2016 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-27402928

RESUMO

Hysteresis is more than just an interesting oddity that occurs in materials with a first-order transition. It is a real obstacle on the path from existing laboratory-scale prototypes of magnetic refrigerators towards commercialization of this potentially disruptive cooling technology. Indeed, the reversibility of the magnetocaloric effect, being essential for magnetic heat pumps, strongly depends on the width of the thermal hysteresis and, therefore, it is necessary to understand the mechanisms causing hysteresis and to find solutions to minimize losses associated with thermal hysteresis in order to maximize the efficiency of magnetic cooling devices. In this work, we discuss the fundamental aspects that can contribute to thermal hysteresis and the strategies that we are developing to at least partially overcome the hysteresis problem in some selected classes of magnetocaloric materials with large application potential. In doing so, we refer to the most relevant classes of magnetic refrigerants La-Fe-Si-, Heusler- and Fe2P-type compounds.This article is part of the themed issue 'Taking the temperature of phase transitions in cool materials'.

3.
Phys Rev Lett ; 102(3): 035702, 2009 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-19257370

RESUMO

The free energies of the austenite, the (modulated) premartensite and the unmodulated martensite of Ni2MnGa are determined using density functional theory and including quasiharmonic phonons and fixed-spin-moment magnons. This approach very well reproduces the complete phase sequence (martensite<-->premartensite<-->austenite) of stoichiometric Ni2MnGa as a function of temperature. By analyzing the relevant free energy contributions, we also understand the delicate interplay of phonons and magnons driving both phase transitions.

4.
J Phys Condens Matter ; 21(6): 064228, 2009 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-21715930

RESUMO

In the quest for ultra-high-density magnetic recording, new materials in the nanometre range have attracted much interest over the last decade involving intense studies of L1(0) phases of contemporary or future storage media materials like FePt or CoPt nanoparticles. Based on large-scale density functional theory calculations, we provide a systematic overview of the structural and magnetic properties of various morphologies of FePt and CoPt nanoclusters with diameters up to 3 nm. In this size range, the ordered multiply twinned morphologies are energetically favoured over the nanoclusters with the desired layer type L1(0) and high magnetocrystalline anisotropy. Other nanoparticles of interest, like FePd, also show a preference for multiply twinned structures or exhibit, as in the case of MnPt nanoclusters, a strong tendency for antiferromagnetic ordering instead of ferromagnetic order. The compositional trends of the various nanoparticles can be traced back to differences in the partial electronic density of states of the 3d element.

5.
J Phys Condens Matter ; 21(6): 064238, 2009 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-21715940

RESUMO

Co doped ZnO (Zn(1-x)Co(x)O) is studied as a prototype material for transition metal doped II-VI diluted magnetic semiconductors (DMSs) from first-principles and Monte Carlo simulations. The exchange interactions are calculated using the Korringa-Kohn-Rostoker (KKR) Green's function method. The exchange coupling constants thus obtained are treated in the classical Heisenberg model and the magnetic phase transitions are studied by the Monte Carlo technique. Our results show that the defect free substitutional DMSs of Zn(1-x)Co(x)O do not sustain magnetization at low concentration. At high concentration, we find layered magnetic structures. Ferromagnetism, with Curie temperature below room temperature, is stable at intermediate Co concentrations. First-principles studies with the generalized gradient approximation (GGA) and the GGA together with the Hubbard U are discussed with respect to structural and electronic properties of ZnO.

9.
10.
Phys Rev B Condens Matter ; 47(2): 1099-1102, 1993 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-10005594
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...