Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 17013, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36220883

RESUMO

One of the remaining challenges in magnetic thermonuclear fusion is survival of the heat shield protecting the tokamak reactor vessel against excessive plasma heat fluxes. Unmitigated high confinement edge localized mode (ELM) is a regular heat pulse damaging the heat shield. We suggest a novel concept of magnetic sweeping of the plasma contact strike point fast and far enough in order to spread this heat pulse. We demonstrate feasibility of a dedicated copper coil in a resonant circuit, including the induced currents and power electronics. We predict the DEMO ELM properties, simulate heat conduction, 3D particles motion and magnetic fields of the plasma and coil in COMSOL Multiphysics and Matlab. The dominant system parameter is voltage, feasible 18 kV yields 1 kHz sweeping frequency, suppressing the ELM-induced surface temperature rise by a factor of 3. Multiplied by other known mitigation concepts, ELMs might be mitigated enough to ensure safe operation of DEMO.

2.
Rev Sci Instrum ; 89(10): 10J119, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399664

RESUMO

The measurements of the magnetic field in tokamaks such as ITER and DEMO will be challenging due to the long pulse duration, high neutron flux, and elevated temperatures. The long duration of the plasma pulse makes standard techniques, such as inductive coils, prone to errors. At the same time, the hostile environment, with repairs possible only on blanket exchange, if at all, requires a robust magnetic sensor. This contribution presents the final design of novel, steady-state, magnetic sensors for ITER. A poloidal array of 60 sensors mounted on the vacuum vessel outer shell contributes to the measurement of the plasma current, plasma-wall clearance, low-frequency MHD modes and will allow for crosscheck with the outer-vessel inductive coils. Each sensor hosts a pair of bismuth Hall probes, themselves an outcome of extensive R&D, including neutron irradiations (to 1023 n/m2), temperature cycling tests (73-473 K) and tests at high magnetic field (to 12 T). A significant effort has been devoted to optimize the sensor housing by design and prototyping. The production version features an indium-filled cell for in situ recalibration of the onboard thermocouple, vital for the interpretation of the Hall sensor measurement.

3.
Rev Sci Instrum ; 89(10): 10J112, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399944

RESUMO

The ITER outer vessel steady-state magnetic field sensor diagnostics consist of sixty sensor units. Each sensor unit features a pair of ceramic-metal Hall sensors with a sensing layer made of bismuth. The sensors were tested simultaneously in the magnetic field ranging from -12 T to +12 T at the temperature range from 27 to 127 °C. The Hall coefficient and magnetoresistance of the bismuth layer related to the sensors were identified. In the sensor operating conditions, the Hall coefficient dependence on temperature was fitted with an exponential function with a relative error of less than 0.08%, and the dependence on the magnetic field was fitted with a Gaussian-like function with a relative error of less than 0.11%. An alternative expression based on the physical understanding of the free charge carrier transport in semimetals was derived to describe the dependence of the Hall coefficient on the magnetic field, and its fitting error of 1.2 mT in terms of the magnetic field measurement has met the ITER measurement accuracy requirements.

4.
Rev Sci Instrum ; 87(11): 11D446, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910548

RESUMO

Performance of bismuth Hall sensors developed for the ITER steady state magnetic diagnostic was investigated for high magnetic fields in the range ±7 T. Response of the sensors to the magnetic field was found to be nonlinear particularly within the range ±1 T. Significant contribution of the planar Hall effect to the sensors output voltage causing undesirable cross field sensitivity was identified. It was demonstrated that this effect can be minimized by the optimization of the sensor geometry and alignment with the magnetic field and by the application of "current-spinning technique."

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...