Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 407(6805): 711-7, 2000 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-11048711

RESUMO

DNA mismatch repair ensures genomic integrity on DNA replication. Recognition of a DNA mismatch by a dimeric MutS protein initiates a cascade of reactions and results in repair of the newly synthesized strand; however, details of the molecular mechanism remain controversial. Here we present the crystal structure at 2.2 A of MutS from Escherichia coli bound to a G x T mismatch. The two MutS monomers have different conformations and form a heterodimer at the structural level. Only one monomer recognizes the mismatch specifically and has ADP bound. Mismatch recognition occurs by extensive minor groove interactions causing unusual base pairing and kinking of the DNA. Nonspecific major groove DNA-binding domains from both monomers embrace the DNA in a clamp-like structure. The interleaved nucleotide-binding sites are located far from the DNA. Mutations in human MutS alpha (MSH2/MSH6) that lead to hereditary predisposition for cancer, such as hereditary non-polyposis colorectal cancer, can be mapped to this crystal structure.


Assuntos
Proteínas de Bactérias/fisiologia , Pareamento Incorreto de Bases , Reparo do DNA , DNA Bacteriano/química , Proteínas de Ligação a DNA/química , Proteínas de Escherichia coli , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/genética , Sítios de Ligação , Neoplasias Colorretais Hereditárias sem Polipose/genética , Cristalografia por Raios X , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/metabolismo , Dimerização , Escherichia coli/química , Escherichia coli/metabolismo , Guanina/metabolismo , Humanos , Hidrólise , Modelos Moleculares , Proteína MutS de Ligação de DNA com Erro de Pareamento , Proteína 2 Homóloga a MutS , Mutação , Conformação de Ácido Nucleico , Conformação Proteica , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/fisiologia , Timina/metabolismo
2.
Exp Eye Res ; 64(6): 1037-41, 1997 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-9301485

RESUMO

Clones derived from SV40-transformed hamster lens cells have at least three different stable morphologies. Biochemical differences between the three cell types that become detectable after transfection of the alpha A-crystallin gene do exist at the level of alpha B-crystallin and small heat shock protein (HSP27) expression. Furthermore one cell type is capable of alternative splicing of the hamster alpha A-crystallin gene, whereas another one cannot express alpha AIns-crystallin.


Assuntos
Linhagem Celular Transformada/metabolismo , Transformação Celular Viral , Cristalino/metabolismo , Vírus 40 dos Símios , Animais , Linhagem Celular Transformada/citologia , Cricetinae , Cristalinas/genética , Cristalinas/metabolismo , Expressão Gênica , Proteínas de Choque Térmico/metabolismo , Cristalino/citologia , Transfecção
3.
J Biol Chem ; 272(15): 10080-6, 1997 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-9092552

RESUMO

The eukaryotic proteasome is a barrel-shaped protease complex made up of four seven-membered rings of which the outer and inner rings may contain up to seven different alpha- and beta-type subunits, respectively. The assembly of the eukaryotic proteasome is not well understood. We cloned the cDNA for HsC8, which is one of the seven known human alpha-type subunits, and produced the protein in Escherichia coli. Recombinant HsC8 protein forms a complex of about 540 kDa consisting of double ringlike structures, each ring containing seven subunits. Such a structure has not earlier been reported for any eukaryotic proteasome subunit, but is similar to the complex formed by the recombinant alpha-subunit of the archaebacterium Thermoplasma acidophilum (Zwickl, P., Kleinz, J., and Baumeister, W. (1994) Nat. Struct. Biol. 1, 765-770). The ability of HsC8 to form alpha-rings suggests that these complexes may play an important role in the initiation of proteasome assembly in eukaryotes. To test this, we used two human beta-type subunits, HsBPROS26 and HsDelta. Both these beta-type subunits, either in the proprotein or in the mature form, exist in monomers up to tetramers. In contrast to the alpha- and beta-subunit of T. acidophilum, coexpression of the human beta-type subunits with HsC8 does not result in the formation of proteasome-like particles, which would be in agreement with the notion that proteasome assembly in eukaryotes is much more complex than in archaebacteria.


Assuntos
Cisteína Endopeptidases/química , Complexos Multienzimáticos/química , Cisteína Endopeptidases/ultraestrutura , Células HeLa , Humanos , Microscopia Eletrônica , Peso Molecular , Complexos Multienzimáticos/ultraestrutura , Complexo de Endopeptidases do Proteassoma , Conformação Proteica , Proteínas Recombinantes/química , Thermoplasma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...