Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Endocrinol ; 41(6): 423-30, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18787053

RESUMO

This study was conducted to test whether oxidative stress activates the intracellular protein kinase B (AKT1) signaling pathway, which culminates with cardiac hypertrophy in experimental hyperthyroidism. Male Wistar rats were divided into four groups: control, vitamin E, thyroxine (T(4)), and T(4)+vitamin E. Hyperthyroidism was induced by T(4) administration (12 mg/l in drinking water for 28 days). Vitamin E treatment was given during the same period via s.c. injections (20 mg/kg per day). Morphometric and hemodynamic parameters were evaluated at the end of the 4-week treatment period. Protein oxidation, redox state (reduced glutathione, GSH/glutathione dissulfide, GSSG), vitamin C, total radical-trapping antioxidant potential (TRAP), hydrogen peroxide (H2O2), and nitric oxide metabolites (NO(X)) were measured in heart homogenates. The p-AKT1/AKT1 ratio, p-glycogen-synthase kinase (GSK)3B/GSK3B ratio, FOS, and JUN myocardial protein expression were also quantified by western blot after 4 weeks. Increases in biochemical parameters, such as protein oxidation (41%), H2O2 (62%), and NO(X) (218%), and increase in the left ventricular end-diastolic pressure were observed in the T(4) group. T(4) treatment also caused a decrease in GSH/GSSG ratio (83%), vitamin C (34%), and TRAP (55%). These alterations were attenuated by vitamin E administration to the hyperthyroid rats. Expression of p-AKT1/AKT1, p-GSK3B/GSK3B, FOS, and JUN were elevated in the T(4) group (by 69, 37, 130, and 33% respectively), whereas vitamin E administration promoted a significant reduction in their expression. These results indicate that oxidative stress plays an important role in cardiac hypertrophy, and suggest redox activation of AKT1 and JUN/FOS signaling pathways with H2O2 acting as a possible intracellular mediator in this adaptive response to experimental hyperthyroidism.


Assuntos
Cardiomegalia/etiologia , Modelos Animais de Doenças , Hipertireoidismo/complicações , Transdução de Sinais , Animais , Ácido Ascórbico/metabolismo , Western Blotting , Cardiomegalia/metabolismo , Glutationa/metabolismo , Peróxido de Hidrogênio/metabolismo , Masculino , Oxirredução , Ratos , Ratos Wistar , Tiroxina/sangue
2.
Mol Cell Biochem ; 303(1-2): 89-95, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17447016

RESUMO

Thyroxine can cause cardiac hypertrophy by activating growth factors, such as IGF-I (insulin-like growth factor-I). Since oxidative stress is enhanced in the hyperthyroidism, it would control protein expression involved in this hypertrophy. Male Wistar rats were divided into four groups: (I) control, (II) vitamin E-supplemented (20 mg/kg/day subcutaneous), (III) hyperthyroid (thyroxine 12 mg/l, in drinking water), and (IV) hyperthyroid + vitamin E. After 4 weeks, the contractility and relaxation indexes of left ventricle (LV), and cardiac mass were increased by 54%, 60%, and 60%, respectively, in hyperthyroid group. An increase in lipid peroxidation (around 40%), and a decrease in total glutathione (by 20%) was induced by thyroxine and avoided by vitamin E administration. Superoxide dismutase (SOD) and glutathione-S-transferase (GST) activities were increased (by 83% and 54%, respectively) in hyperthyroid, and vitamin E avoided changes in SOD. Protein expression of SOD, GST, and IGF-I receptor (IGF-IR) were increased (by 87%, 84%, and 60%, respectively) by thyroxine, and vitamin E promoted a significant reduction in SOD and IGF-IR expression (by 36% and 17%, respectively). These results indicate that oxidative stress is involved in cardiac hypertrophy, and suggest a role for IGF-IR as a mediator of this adaptive response in experimental hyperthyroidism.


Assuntos
Cardiomegalia/patologia , Peroxidação de Lipídeos/efeitos dos fármacos , Estresse Oxidativo , Receptor IGF Tipo 1/metabolismo , Tiroxina/farmacologia , Animais , Antioxidantes/farmacologia , Peso Corporal , Cardiomegalia/induzido quimicamente , Cardiomegalia/metabolismo , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Glutationa Transferase/metabolismo , Masculino , Oxirredução , Ratos , Ratos Wistar , Superóxido Dismutase/metabolismo , Tiroxina/sangue , Vitamina E/farmacologia
3.
Mol Cell Endocrinol ; 249(1-2): 133-9, 2006 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-16574313

RESUMO

Hyperthyroidism was induced in rats by l-thyroxine administration (12 mg/L in drinking water, 4 weeks). Animals were assessed hemodynamically, and heart, lung, and liver morphometry were performed. Lipid peroxidation (LPO) and protein oxidation (carbonyls) were measured in heart homogenates. It was quantified glutathione (GSH) metabolism, and antioxidant enzyme activities its and protein expression (by Western blot). At the end of treatment, it was observed cardiac hypertrophy, elevation of left ventricular systolic and end diastolic pressures, lung and liver congestion. LPO and carbonyls were increased in the hyperthyroid group, and GSH was decreased by 46% in the fourth week. Myocardial oxidative stress time course analysis revealed that it was increased in the second week of treatment. Antioxidant enzyme activities elevation was accompanied by protein expression induction in the hyperthyroid group in the fourth week. These results imply that hyperthyroidism generates myocardial dysfunction associated with oxidative stress inducing antioxidant enzyme activities and protein expression.


Assuntos
Antioxidantes/metabolismo , Glutationa/metabolismo , Hipertireoidismo/metabolismo , Miocárdio/enzimologia , Animais , Catalase/metabolismo , Glutationa Transferase/metabolismo , Cardiopatias/complicações , Hipertireoidismo/induzido quimicamente , Hipertireoidismo/complicações , Peroxidação de Lipídeos , Miocárdio/metabolismo , Oxirredução , Ratos , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Tiroxina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...