Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 10853, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35760980

RESUMO

The skin has a protective barrier against the external environment, making the transdermal delivery of active macromolecules very difficult. Cell-penetrating peptides (CPPs) have been accepted as useful delivery tools owing to their high transduction efficiency and low cytotoxicity. In this study, we evaluated the hydrophobic peptide, macromolecule transduction domain 1067 (MTD 1067) as a CPP for the transdermal delivery of protein cargoes of various sizes, including growth hormone-releasing hexapeptide-6 (GHRP-6), a truncated form of insulin-like growth factor-I (des(1-3)IGF-I), and platelet-derived growth factor BB (PDGF-BB). The MTD 1067-conjugated GHRP-6 (MTD-GHRP-6) was chemically synthesized, whereas the MTD 1067-conjugated des(1-3)IGF-I and PDGF-BB proteins (MTD-des(1-3)IGF-I and MTD-PDGF-BB) were generated as recombinant proteins. All the MTD 1067-conjugated cargoes exhibited biological activities identical or improved when compared to those of the original cargoes. The analysis of confocal microscopy images showed that MTD-GHRP-6, MTD-des(1-3)IGF-I, and MTD-PDGF-BB were detected at 4.4-, 18.8-, and 32.9-times higher levels in the dermis, respectively, compared to the control group without MTD. Furthermore, the MTD 1067-conjugated cargoes did not show cytotoxicity. Altogether, our data demonstrate the potential of MTD 1067 conjugation in developing functional macromolecules for cosmetics and drugs with enhanced transdermal permeability.


Assuntos
Peptídeos Penetradores de Células , Fator de Crescimento Insulin-Like I , Becaplermina , Fator de Crescimento Insulin-Like I/metabolismo , Proteínas Proto-Oncogênicas c-sis , Proteínas Recombinantes
2.
Microb Ecol ; 74(4): 821-831, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28620784

RESUMO

Taurine, 2-aminoethanesulfonate, is known to function as an antioxidant or membrane stabilizer in eukaryotic cells, but its role in bacteria has been poorly characterized. Biofilm formation of Acinetobacter oleivorans DR1 was significantly reduced by taurine only during alkane degradation, suggesting that taurine affects alkane-induced cell surface. Structurally similar compounds harboring an amine group such as hypotaurine or ethylenediamine have a similar effect, which was not observed with sulfonate-containing chemicals such as ethanesulfonic acid, hexanesulfonic acid. Our biochemical assays and physiological tests demonstrate that taurine reduced cell surface hydrophobicity, which resulted in interruption of the interactions between cells and oily substrate surfaces, such that cells utilized alkanes less effectively. Interestingly, taurine-mediated reduction of quorum sensing (QS) signal production and QS-control sapA gene expression indicated that membrane permeability of quorum signals was also interfered by taurine. Composition and biomass of extracellular polymeric saccharides were changed in taurine-amended conditions. Taken together, our data provide evidence that amine-containing taurine can inhibit biofilm formation of DR1 cells during alkane degradation by (i) changing cell surface charge and (ii) reducing membrane hydrophobicity and QS sensing.


Assuntos
Acinetobacter/efeitos dos fármacos , Acinetobacter/fisiologia , Alcanos/metabolismo , Antioxidantes/farmacologia , Biofilmes/efeitos dos fármacos , Taurina/farmacologia , Biodegradação Ambiental , Interações Hidrofóbicas e Hidrofílicas , Percepção de Quorum
3.
J Microbiol Biotechnol ; 26(3): 540-8, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26699752

RESUMO

Microbially induced calcium carbonate precipitation (CCP) is a long-standing but re-emerging environmental engineering process for production of self-healing concrete, bioremediation, and long-term storage of CO2. CCP-capable bacteria, two Bacillus strains (JH3 and JH7) and one Sporosarcina strain (HYO08), were isolated from two samples of concrete and characterized phylogenetically. Calcium carbonate crystals precipitated by the three strains were morphologically distinct according to field emission scanning electron microscopy. Energy dispersive X-ray spectrometry mapping confirmed biomineralization via extracellular calcium carbonate production. The three strains differed in their physiological characteristics: growth at alkali pH and high NaCl concentrations, and urease activity. Sporosarcina sp. HYO08 and Bacillus sp. JH7 were more alkali- and halotolerant, respectively. Analysis of the community from the same concrete samples using barcoded pyrosequencing revealed that the relative abundance of Bacillus and Sporosarcina species was low, which indicated low culturability of other dominant bacteria. This study suggests that calcium carbonate crystals with different properties can be produced by various CCP-capable strains, and other novel isolates await discovery.


Assuntos
Bacillus/metabolismo , Carbonato de Cálcio/química , Materiais de Construção/microbiologia , Sporosarcina/metabolismo , Bacillus/genética , Bacillus/isolamento & purificação , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Carbonato de Cálcio/metabolismo , Precipitação Química , Dados de Sequência Molecular , Filogenia , Sporosarcina/genética , Sporosarcina/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...