Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Funct ; 15(13): 6975-6987, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38853660

RESUMO

Atopic dermatitis (AD) is a chronic immune disease that requires long-term management owing to its relative ease of recurrence. However, steroid treatment is limited owing to the side effects. Therefore, research on therapeutics with proven safety is required. Here, we evaluated the anti-allergic activity of the probiotic strain Pediococcus pentosaceus KF159 (PPKF159) with an ex vivo mouse model sensitized with ovalbumin (OVA) and a mouse model of AD induced by house dust mites. Changes in pathological symptoms were confirmed based on the clinical status of the AD-induced lesion site and the levels of T helper type 2 (Th2)-derived cytokines and immunoglobulin E (IgE). In addition, cell-mediated responses and related mechanisms were elucidated using various kinds of primary cells including splenocytes, mesenteric lymph nodes, Peyer's patch, and bone marrow-derived dendritic cells (BMDCs) in vitro and ex vivo. Oral administration of PPKF159 alleviated AD-like clinical symptoms such as erythema, edema, hemorrhage, and increased tissue thickness, and suppressed the production of Th2-associated cytokines and serum IgE while increasing T helper type 1 (Th1)-mediated cytokine production. PPKF159 induced tolerogenic dendritic cells (tol-DCs) by increasing the expression of ICOS-L, PD-L1, and IDO which were closely related to Treg induction in PPKF159-treated BMDCs. In addition, BMDCs and naive T cells co-cultured in the presence of PPKF159 had elevated IL10 production and increased proportions of CD4+CD25+Foxp3+ Tregs compared to the absence of PPKF159. This study showed that PPKF159 relieved AD-like clinical symptoms, modulated the Th1/Th2 immune balance, and inhibited IgE production in a mouse AD model. PPKF159 induced the transformation of dendritic cells into tolerogenic versions. These induced tol-DCs directly enhanced the production of IL10 or improved the secretion of IL10 through the induction of CD4+CD25+Foxp3+ Treg cells, thereby improving AD. These results suggest that PPKF159 can be applied as a functional food material for the treatment and prevention of AD.


Assuntos
Dermatite Atópica , Modelos Animais de Doenças , Interleucina-10 , Camundongos Endogâmicos BALB C , Pediococcus pentosaceus , Probióticos , Pyroglyphidae , Linfócitos T Reguladores , Animais , Linfócitos T Reguladores/imunologia , Camundongos , Dermatite Atópica/imunologia , Probióticos/farmacologia , Probióticos/administração & dosagem , Pyroglyphidae/imunologia , Feminino , Imunoglobulina E , Células Th2/imunologia , Citocinas/metabolismo
2.
Ecotoxicol Environ Saf ; 281: 116637, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38941663

RESUMO

Airborne particulate matter (PM) is a global environmental risk factor threatening human health and is a major cause of cardiovascular and respiratory disease-associated death. Current studies on PM exposure have been limited to large-scale cohort and epidemiological investigations, emphasizing the need for detailed individual-level studies to uncover specific differentially expressed genes and their associated signaling mechanisms. Herein, we revealed that PM exposure significantly upregulated inflammatory and immune responses, such as cytokine-mediated signaling pathways, complement system, and the activation and migration of immune cells in gene set enrichment analysis of our RNA sequencing (RNAseq) data. Remarkably, we discovered that the broad gene expression and signaling pathways mediated by macrophages were predominantly expressed in the respiratory system following PM exposure. Consistent with these observations, individual PMs, classified by aerodynamic size and origin, significantly promoted macrophage recruitment to the lungs in the mouse lung inflammation model. Additionally, we confirmed that RNAseq observations from the respiratory system were reproduced in murine bone marrow-derived macrophages and the alveolar macrophage cell line MH-S after individual PM exposure. Our findings demonstrated that PM exposure augmented broad inflammatory and immune responses in the respiratory system and suggested the reinforcement of global strategies for reducing particulate air pollution to prevent respiratory diseases and their exacerbation.


Assuntos
Poluentes Atmosféricos , Material Particulado , Transdução de Sinais , Material Particulado/toxicidade , Animais , Camundongos , Transdução de Sinais/efeitos dos fármacos , Poluentes Atmosféricos/toxicidade , Camundongos Endogâmicos C57BL , Sistema Respiratório/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos Alveolares/efeitos dos fármacos
3.
Front Endocrinol (Lausanne) ; 14: 1224636, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37705572

RESUMO

Introduction: The status of an impaired gut microbial community, known as dysbiosis, is associated with metabolic diseases such as obesity and insulin resistance. The use of probiotics has been considered an effective approach for the treatment and prevention of obesity and related gut microbial dysbiosis. The anti-obesity effect of Lacticaseibacillus paracasei AO356 was recently reported. However, the effect of L. paracasei AO356 on the gut microbiota has not yet been identified. This study aimed to elucidate the effect of L. paracasei AO356 on gut microbiota and ensure its safety for use as a probiotic. Methods: Oral administration of L. paracasei AO356 (107 colony-forming units [CFU]/mg per day, 5 days a week, for 10 weeks) to mice fed a high-fat diet significantly suppressed weight gain and fat mass. We investigated the composition of gut microbiota and explored its association with obesity-related markers. Results: Oral administration of L. paracasei AO356 significantly changed the gut microbiota and modified the relative abundance of Lactobacillus, Bacteroides, and Oscillospira. Bacteroides and Oscillospira were significantly related to the lipid metabolism pathway and obesity-related markers. We also confirmed the safety of L. paracasei AO356 using antibiotics resistance, hemolysis activity, bile salt hydrolase activity, lactate production, and toxicity tests following the safety assessment guidelines of the Ministry of Food and Drug Safety (MFDS). Discussion: This study demonstrated that L. paracasei AO356 is not only associated with an anti-obesity effect but also with changes in the gut microbiota and metabolic pathways related to obesity. Furthermore, the overall safety assessment seen in this study could increase the potential use of new probiotic materials with anti-obesity effects.


Assuntos
Microbioma Gastrointestinal , Lacticaseibacillus paracasei , Animais , Camundongos , Lacticaseibacillus , Disbiose , Obesidade/tratamento farmacológico , Modelos Animais de Doenças , Ácido Láctico
4.
Antioxidants (Basel) ; 12(8)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37627586

RESUMO

Particulate matter (PM) induces and augments oxidative stress and inflammation, leading to respiratory diseases. Although Artemisia gmelinii Weber ex Stechm has antioxidant and anti-inflammatory effects, there are no reports on whether Artemisia gmelinii extract (AGE) regulates lung inflammation in a PM-induced model. Thus, we investigated the protective effects of AGE using a PM-induced mouse lung inflammation model. AGE significantly decreased the expression of inflammatory chemokines, neutrophil extracellular trap formation, and the total number of inflammatory cells in the bronchoalveolar lavage fluid (BALF). Furthermore, AGE attenuated lung inflammation through the suppression of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)/mitogen-activated protein kinase (MAPK) signaling pathway, while promoting the nuclear factor erythroid-2-related factor 2 (NRF2)/heme oxygenase-1 (HO-1) signaling pathway in lung tissues. Concordant with these observations, AGE suppressed inflammatory cytokines, chemokines, reactive oxygen species, NETosis, myeloperoxidase, and neutrophil elastase by decreasing the mRNA expression of High mobility group box 1, Runt-related transcription factor 1, and Kruppel-like factor 6 in differentiated HL-60 cells. In summary, our data demonstrated that AGE suppresses PM-induced neutrophil infiltration, lung damage, and pulmonary inflammation by suppressing NF-κB/MAPK signaling pathways and enhancing the NRF2/HO-1 signaling pathway. These findings suggest that AGE administration is an effective approach for preventing and treating PM-induced respiratory inflammation.

5.
J Microbiol Biotechnol ; 33(5): 634-643, 2023 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-36804255

RESUMO

Chronic obstructive pulmonary disease (COPD), one of the leading causes of death worldwide, is caused by repeated exposure to harmful matter, such as cigarette smoke. Although Lilium longiflorum Thunb (LLT) has anti-inflammatory effects, there is no report on the fermented LLT bulb extract regulating lung inflammation in COPD. Thus, we investigated the protective effect of LLT bulb extract fermented with Lactobacillus acidophilus 803 in COPD mouse models induced by cigarette smoke extract (CSE) and porcine pancreas elastase (PPE). Oral administration of the fermented product (LS803) suppressed the production of inflammatory mediators and the infiltration of immune cells involving neutrophils and macrophages, resulting in protective effects against lung damage. In addition, LS803 inhibited CSE- and LPS-induced IL-6 and IL-8 production in airway epithelial H292 cells as well as suppressed PMA-induced formation of neutrophil extracellular traps in HL-60 cells. In particular, LS803 significantly repressed the elevated IL-6 and MIP-2 production after CSE and LPS stimulation by suppressing the activity of the nuclear factor kappa-light-chain-enhancer of activated B (NFκB) in mouse peritoneal macrophages. Therefore, our results suggest that the fermented product LS803 is effective in preventing and alleviating lung inflammation.


Assuntos
Lilium , Pneumonia , Doença Pulmonar Obstrutiva Crônica , Animais , Camundongos , Lactobacillus acidophilus , Interleucina-6/farmacologia , Lipopolissacarídeos/farmacologia , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/etiologia , Pulmão , Inflamação/tratamento farmacológico , Pneumonia/complicações
6.
Foods ; 11(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36360028

RESUMO

Dietary habits have a great impact on one's health, especially in cognitive decline. Tomato and lemon contain diverse bioactive compounds and possess various effects, including the enhancement of cognitive function. We observed the protective effect of tomato, lemon extract and the mixture of them on H2O2-induced cytotoxicity of PC12 cells. To measure the in vivo effect in a murine model, each extract was orally administered to forty 1-year-old mice for 6 weeks, and a novel object recognition (NOR) test was performed to observe cognitive function, and hippocampal neurogenesis was observed through a doublecortin (DCX) stain. PC12 cell death by oxidative stress was reduced by pretreating with each extract, and a synergistic reduction was observed in the mixture. Newly generated DCX-positive neurons were synergistically increased in the hippocampus by the mixture. NOR test showed a tendency to significantly improve age-related cognitive dysfunction by consuming the mixture of tomato and lemon. In conclusion, tomato and lemon extracts can reduce cellular oxidative stress and increase NOR, likely due to enhanced neurogenesis, while the mixture of the two showed synergistic anti-oxidative effects and hippocampal neurogenesis.

7.
Antioxidants (Basel) ; 11(9)2022 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-36139757

RESUMO

Cigarette smoke (CS) is the major factor in the development of chronic obstructive pulmonary disease (COPD), the third leading cause of death worldwide. Furthermore, although Camellia sinensis (CN) has been known as an anti-inflammatory material, the effect of CN has not yet been known on pulmonary inflammation in COPD. Thus, we investigated the protective effects of Camellia sinensis L. extract (CLE) against pulmonary inflammation in porcine pancreas elastase (PPE) and a cigarette smoke extract (CSE)-induced COPD mouse model. Oral administration of CLE suppressed the symptoms such as infiltration of immune cells, cytokines/chemokines secretion, mucus hypersecretion, and injuries of the lung parenchyma. Increased inflammatory responses in COPD are mediated by various immune cells such as airway epithelial cells, neutrophils, and alveolar macrophages. Thus, we investigated the effect and mechanisms of CLE in H292, HL-60, and MH-S cells. The CLE inhibited the expression of IL-6, IL-8, MUC5AC and MUC5B on CSE/LPS-stimulated H292 cells and also suppressed the formation of neutrophil extracellular traps and secretion of neutrophil elastase by inhibiting reactive oxygen species in PMA-induced HL-60 cells. In particular, the CLE suppressed the release of cytokines and chemokines caused by activating the nuclear factor kappa-light-chain-enhancer of activated B via the activation of nuclear factor erythroid-2-related factor 2 and the heme oxygenase-1 pathway in CSE/LPS-stimulated MH-S cells. Therefore, we suggest that the CLE administration be the effective approach for treating or preventing chronic pulmonary diseases such as COPD induced by CS.

8.
Am J Cancer Res ; 12(7): 3373-3389, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35968322

RESUMO

Targeting tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) signaling is a promising approach in cancer treatment. Although ERK and/or NF-κB signaling is involved in the expression of TRAIL receptors (TRAIL-R), the exact underlying mechanisms remain unknown. In this study, we evaluated the role of ERK2 and NF-κB in the cytotoxicity of TRAIL during cisplatin treatment. Cisplatin treatment of neuroepithelioma cells (SK-N-MC) significantly induced ERK2 activation and increased TRAIL cytotoxicity via the upregulation of death receptor 5 (DR5) expression. In partial ERK2 knockdown cell lines that maintained only basal levels of ERK2 activity, cisplatin treatment did not increase ERK2 activity or DR5 expression. These findings indicate that induced (rather than basal) ERK2 activity enhances TRAIL susceptibility via DR5 expression. In complete ERK2 knockdown cell lines with no basal ERK2 activity, DR4, DR5, and DcRs expression levels were increased, and additional treatment with cisplatin did not further increase TRAIL-R expression. Chemical inhibition of ERK2 also enhanced TRAIL cytotoxicity by upregulating DR4 and DR5 expression. These findings indicate that basal ERK2 activity suppresses TRAIL-R expression. Both basal and inducible ERK2 activities regulate TRAIL-R expression via the NF-κB signaling pathway. Overall, our findings suggest that the ERK2/NF-κB signaling pathway has a dual role in TRAIL susceptibility by differentially regulating TRAIL-R expression in the same cellular system.

9.
Antioxidants (Basel) ; 11(3)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35326218

RESUMO

Cigarette smoke (CS) is the main cause of chronic obstructive pulmonary disease (COPD), and continuous CS exposure causes lung inflammation and deterioration. To investigate the protective effects of Artemisia gmelinii against lung inflammation in this study, cigarette smoke extract (CSE)/lipopolysaccharide (LPS)-treated alveolar macrophages (AMs) and mice stimulated with CSE/porcine pancreas elastase (PPE) were used. Artemisia gmelinii ethanol extract (AGE) was effective in decreasing the levels of cytokines, chemokine, inducible nitric oxide synthase, and cyclooxygenase-2 by inhibiting mitogen-activated protein (MAP) kinases/nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway in AMs. Additionally, oral administration of AGE suppressed inflammatory cells' infiltration and secretion of inflammatory cytokines, chemokines, matrix metallopeptidase 9, and neutrophil extracellular traps in bronchoalveolar lavage fluid from the COPD model. Moreover, the obstruction of small airways, the destruction of the lung parenchyma, and expression of IL-6, TNF-α, IL-1ß, and MIP-2 were suppressed by inhibiting NF-κB activation in the lung tissues of the AGE group. These effects are associated with scopolin, chlorogenic acid, hyperoside, 3,4-di-O-caffeoylquinic acid, 3,5-di-O-caffeoylquinic acid, and 4,5-di-O-caffeoylquinic acid, which are the main components of AGE. These data demonstrate the mitigation effect of AGE on lung inflammation via inhibition of MAPK and NF-κB pathways, suggesting that AGE may be instrumental in improving respiratory and lung health.

10.
Foods ; 10(12)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34945480

RESUMO

Chronic airway exposure to harmful substances, such as deleterious gases, cigarette smoke (CS), and particulate matter, triggers chronic obstructive pulmonary disease (COPD), characterized by impaired lung function and unbridled immune responses. Emerging epigenomic and genomic evidence suggests that excessive recruitment of alveolar macrophages and neutrophils contributes to COPD pathogenesis by producing various inflammatory mediators, such as reactive oxygen species (ROS), neutrophil elastase, interleukin (IL) 6, and IL8. Recent studies showed that Epilobium species attenuated ROS, myeloperoxidase, and inflammatory cytokine production in murine and human innate immune cells. Although the Epilobium genus exerts anti-inflammatory, antioxidant, and antimicrobial effects, the question of whether the Epilobium species regulate lung inflammation and innate immune response in COPD has not been investigated. In this study, Epilobium pyrricholophum extract (EPE) suppressed inflammatory cell recruitment and clinical symptoms in porcine pancreatic elastase and CS extract-induced COPD mice. In addition, EPE attenuated inflammatory gene expression by suppressing MAPKs and NFκB activity. Furthermore, UPLC-Q-TOF MS analyses revealed the anti-inflammatory effects of the identified phytochemical constituents of EPE. Collectively, our studies revealed that EPE represses the innate immune response and inflammatory gene expression in COPD pathogenesis in mice. These findings provide insights into new therapeutic approaches for treating COPD.

11.
Int Immunopharmacol ; 70: 512-519, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30884431

RESUMO

Allergic rhinitis (AR) is an allergic nasal disease characterized by nasal obstruction, rhinorrhea, sneezing, and itching. Type 1 helper T cells (Th1)/type 2 helper T cells (Th2) imbalance has been identified as an important immunological mechanism of AR. In addition, up-regulation of type 17 helper T cells (Th17) also increase the risk of developing AR. Gallic acid (3, 4, 5-trihydroxybenzoic acid, GA), a polyphenol natural product, is obtained from various herbs, red wine, and green tea. It is known to have diverse biological effects such as anti-oxidation, anti-inflammation, anti-microbial and anti-cancer. In the present study, the effect of GA on airway inflammation and expression of Th1, Th2 and Th17 cytokines in an ovalbumin (OVA)-induced AR mouse model were investigated. GA alleviated the nasal allergic symptoms, reduced the thickness of nasal mucosa, attenuated goblet cell hyperplasia and eosinophil cell infiltration in the nasal mucosa, decreased the levels of interleukin (IL)-4, IL-5, IL-13 and IL-17 in nasal lavage fluid (NALF), and diminished the levels of OVA-specific IgE, OVA-specific IgG1 and OVA-specific IgG2a in serum. However, GA increased the expression of interferon-gamma and IL-12 in NALF. Taken together, it suggests that GA may be used as a therapeutic agent for AR.


Assuntos
Anti-Inflamatórios/uso terapêutico , Eosinófilos/imunologia , Ácido Gálico/uso terapêutico , Inflamação/tratamento farmacológico , Mucosa Nasal/imunologia , Rinite Alérgica/tratamento farmacológico , Células Th1/imunologia , Alérgenos/imunologia , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Humanos , Imunoglobulina E/metabolismo , Ativação Linfocitária , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina/imunologia , Células Th17/imunologia , Células Th2/imunologia
12.
J Ethnopharmacol ; 232: 21-29, 2019 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-30502479

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Dryopteris crassirhizoma (DC) is used as a traditional herbal remedy to treat various diseases, the tapeworm infection, common cold, and cancer in Korea, Japan, and China. DC also has the antioxidant anti-inflammatory and antibacterial activities. However, the anti-allergic inflammatory effect of DC and some of its mechanisms in allergic rhinitis model are unknown well. AIM OF THIS STUDY: The purpose of this study is to investigate the anti-allergic inflammatory effect of DC on the allergic rhinitis model, mast cell activation and histamine release. MATERIALS AND METHODS: Allergic rhinitis was induced in BALB/c mice by sensitization and challenge with ovalbumin (OVA). Different concentration of DC and dexamethasone was administrated by oral gavage on 1 h before the OVA challenge. Mice of the control group were treated with saline only. Then mice were evaluated for the presence of nasal mucosa inflammation, the production of allergen-specific cytokine response and the histology of nasal mucosa. RESULTS: DC significantly ameliorated the nasal symptoms and the inflammation of nasal mucosa. DC also reduced the infiltration of eosinophils and mast cells in these tissues and the release of histamine in blood. Meanwhile, DC evidently inhibited the overproduction of Th2 cytokines and increased the Th1 and Treg cytokines in nasal lavage fluid by OVA. DC also reduced the levels of OVA-specific IgE, IgG1 and IgG2a in blood. CONCLUSIONS: This study suggests that DC has a significant anti-allergic inflammatory effect in the nasal cavity. DC may have the therapeutic effect of allergic rhinitis.


Assuntos
Antialérgicos , Dryopteris , Mastócitos/efeitos dos fármacos , Extratos Vegetais , Rinite Alérgica/tratamento farmacológico , Células Th2/efeitos dos fármacos , Alérgenos , Animais , Antialérgicos/farmacologia , Antialérgicos/uso terapêutico , Citocinas/imunologia , Modelos Animais de Doenças , Etanol/química , Imunoglobulina E/sangue , Imunoglobulina G/sangue , Masculino , Mastócitos/imunologia , Camundongos Endogâmicos BALB C , Mucosa Nasal/efeitos dos fármacos , Mucosa Nasal/imunologia , Mucosa Nasal/patologia , Ovalbumina , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Rinite Alérgica/imunologia , Rinite Alérgica/patologia , Solventes/química , Células Th2/imunologia
13.
J Microbiol Biotechnol ; 28(1): 65-76, 2018 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-29121702

RESUMO

Although there has been a steady increase in the prevalence of food allergies worldwide in recent decades, no effective therapeutic strategies have been developed. Modulation of the gut microbiota composition and/or function through probiotics has been highlighted as a promising target for protection against food allergies. In this study, we aimed to investigate the allergy-reducing effects of a probiotic mixture (P5: Lactococcus lactis KF140, Pediococcus pentosaceus KF159, Lactobacillus pentosus KF340, Lactobacillus paracasei 698, and Bacillus amyloliquefaciens 26N) in mice with ovalbumin (OVA)-induced food allergy. Administration of P5 significantly suppressed the oral OVA challenge-induced anaphylactic response and rectal temperature decline, and reduced diarrhea symptoms. Moreover, P5 also significantly inhibited the secretion of IgE, Th2 cytokines (interleukin (IL)-4, IL-5, IL-10, and IL-13), and Th17 cytokines (IL-17), which were increased in mice with OVA-induced food allergy, and induced generation of CD4+Foxp3+ regulatory T cells. These results revealed that P5 may have applications as a preventive agent against food allergy.


Assuntos
Alérgenos/imunologia , Bactérias/imunologia , Hipersensibilidade Alimentar/prevenção & controle , Fatores Imunológicos/administração & dosagem , Probióticos/administração & dosagem , Serpinas/imunologia , Anafilaxia/prevenção & controle , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Imunoglobulina E/sangue , Camundongos , Linfócitos T Reguladores/imunologia , Células Th1/imunologia , Células Th17/imunologia
14.
Eur J Med Chem ; 121: 433-444, 2016 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-27318120

RESUMO

A series of chalcone derivatives were synthesized and evaluated for their µ-calpain and cathepsin B inhibitory activities. Among the tested chalcone derivatives, two compounds, 7 and 11, showed potent inhibitory activities against µ-calpain and cathepsin B and were selected for further evaluation. Compounds 7 and 11 showed enzyme inhibitory activities at the cellular level and displayed neuroprotective effects against oxidative stress-induced apoptosis in SH-SY5Y cells, a human neuroblastoma cell line. Moreover, compounds 7 and 11 reduced p25 formation, tau phosphorylation and insoluble Aß peptide formation. Enzyme kinetic experiments and docking studies revealed that compounds 7 and 11 competitively inhibited both µ-calpain and cathepsin B enzymes.


Assuntos
Peptídeos beta-Amiloides/química , Calpaína/antagonistas & inibidores , Catepsina B/antagonistas & inibidores , Chalcona/química , Chalcona/farmacologia , Regulação para Baixo/efeitos dos fármacos , Fragmentos de Peptídeos/química , Proteínas tau/metabolismo , Calpaína/química , Calpaína/metabolismo , Domínio Catalítico , Catepsina B/química , Catepsina B/metabolismo , Linhagem Celular Tumoral , Chalcona/síntese química , Chalcona/metabolismo , Humanos , Cinética , Simulação de Acoplamento Molecular , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/farmacologia , Fosforilação/efeitos dos fármacos , Solubilidade
15.
Biochem Biophys Res Commun ; 463(4): 894-9, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26074143

RESUMO

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), either alone or in combination with other anti-cancer agents, is a promising new strategy for the treatment of cancer. However, aberrant PI3K/Akt/mTOR survival signaling may confer TRAIL resistance by altering the balance between pro- and anti-apoptotic proteins. In the present study, we showed that the Akt/mTOR inhibitor RAD001 (everolimus) induced cell death in a dose-dependent manner and enhanced TRAIL-induced apoptosis in human leukemic Jurkat T cells, which show PI3K/Akt/mTOR pathway activation and basal expression levels of death receptor (DR) 5 (TRAIL-R2). Investigation of the effect of RAD001 treatment on the expression of TRAIL receptors (TRAIL-Rs) in Jurkat T cells showed that RAD001 significantly upregulated DR5 by up to 51.22%, but not other TRAIL-Rs such as DR4 (TRAIL-R1), decoy receptor (DcR) 1 (TRAIL-R3), and DcR2 (TRAIL-R4). Pretreatment with DR5:Fc chimera abrogated the RAD001-induced increase of TRAIL cytotoxicity, indicating that the upregulation of DR5 by RAD001 plays a role in enhancing the susceptibility of Jurkat T cells to TRAIL. Our results indicate that combination treatment with RAD001 and TRAIL may be a novel therapeutic strategy in leukemia.


Assuntos
Antineoplásicos/farmacologia , Leucemia/patologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/fisiologia , Sirolimo/análogos & derivados , Ligante Indutor de Apoptose Relacionado a TNF/fisiologia , Regulação para Cima/efeitos dos fármacos , Apoptose/fisiologia , Relação Dose-Resposta a Droga , Everolimo , Humanos , Células Jurkat , Leucemia/fisiopatologia , Sirolimo/farmacologia
16.
J Microbiol ; 53(4): 219-25, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25845537

RESUMO

Several strains of Penicillium section Citrina were isolated during a survey of fungi from marine environments along the southern coast of Korea. Based on multigene phylogenetic analyses (ß-tubulin and calmodulin) and morphological characteristics, the 11 strains were identified as P. citrinum, P. hetheringtonii, P. paxilli, P. sumatrense, P. terrigenum, and P. westlingii. To understand the ecological role of these species, we tested all strains for extracellular enzyme activity; six strains representing four species showed ß-glucosidase activity. Four of the identified species - P. hetheringtonii, P. paxilli, P. terrigenum, and P. westlingii - are new records for Korea. For these new species records, we describe morphological characteristics of the strains and compare results to published data of type strains.


Assuntos
Sedimentos Geológicos/microbiologia , Penicillium/classificação , Penicillium/isolamento & purificação , Alga Marinha/microbiologia , Calmodulina/genética , DNA Fúngico/genética , Penicillium/enzimologia , Penicillium/genética , Filogenia , República da Coreia , Análise de Sequência de DNA , Tubulina (Proteína)/genética , beta-Glucosidase/metabolismo
17.
Korean J Food Sci Anim Resour ; 35(6): 867-73, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26877648

RESUMO

1,4-Dihydroxy-2-naphthoic acid (DHNA), a precursor of menaquinone (vitamin K2), has an effect on growth stimulation of bifidobacteria and prevention of osteoporosis, making it a promising functional food material. Therefore, we tried to clone the menB gene encoding DHNA synthase from Leuconostoc mesenteroides CJNU 0147. Based on the genome sequence of Leu. mesenteroides ATCC 8293 (GenBank accession no., CP000414), a primer set (Leu_menBfull_F and Leu_menBfull_R) was designed for the PCR amplification of menB gene of CJNU 0147. A DNA fragment (1,190 bp), including the menB gene, was amplified, cloned into pGEM-T Easy vector, and sequenced. The deduced amino acid sequence of MenB (DHNA synthase) protein of CJNU 0147 had a 98% similarity to the corresponding protein of ATCC 8293. The menB gene was subcloned into pCW4, a lactic acid bacteria - E. coli shuttle vector, and transferred to CJNU 0147. The transcription of menB gene of CJNU 0147 (pCW4::menB) was increased, when compared with those of CJNU 0147 (pCW4) and CJNU 0147 (-). The DHNA was produced from it at a detectable level, indicating that the cloned menB gene of CJNU 0147 encoded a DHNA synthase which is responsible for the production of DHNA, resulting in an increase of bifidogenic growth stimulation activity.

18.
Anal Sci ; 30(10): 985-90, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25312629

RESUMO

Myocardial ischemia (MI) induces many changes in the body, including pH decrease and electrolyte imbalance. No obvious symptoms of MI appear until irreversible cellular injuries occur. Since early treatment is critical for recovery from ischemia, the development of reliable diagnostic tool is demanded to detect the early ischemic status. Ischemia modified albumin (IMA), formed by cleavage of the last two amino acids of the human serum albumin (HSA) N-terminus, has been considered so far as the most trustworthy and accurate marker for the investigation of ischemia. IMA levels are elevated in plasma within a few minutes of ischemic onset, and may last for up to 6 h. In the present study, we developed a novel assay for the examination of IMA levels to ameliorate the known albumin cobalt binding (ACB) test established previously. We observed a stronger copper ion bound to the HSA N-terminal peptide than cobalt ion by HPLC and ESI-TOF mass spectrometric analyses. The copper ion was employed with lucifer yellow (LY), a copper-specific reagent to develop a new albumin copper binding (ACuB) assay. The parameters capable of affecting the assay results were optimized, and the finally-optimized ACuB assay was validated. The result of the IMA level measurement in normal versus stroke rat serum suggests that the ACuB assay is likely to be a reliable and sensitive method for the detection of ischemic states.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Isquemia Miocárdica/diagnóstico , Espectrometria de Massas por Ionização por Electrospray/métodos , Animais , Biomarcadores/sangue , Cobalto , Cobre , Corantes Fluorescentes , Isoquinolinas , Ratos Sprague-Dawley , Albumina Sérica , Albumina Sérica Humana
19.
J Pharm Biomed Anal ; 91: 17-23, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24434278

RESUMO

Human serum albumin (HSA) is the most abundant protein in the human body. HSA injections prepared by fractionating human blood have mainly covered the demand for albumin to treat hypoalbuminemia, the state of low concentration of albumin in blood. HSA in solution may exist in various forms such as monomers, oligomers, polymers, or as mixtures, and its conformational change and/or aggregation may occur easily. Considering these characteristics, there is a great chance of modification and polymer formation during the preparation processes of albumin products, especially injections. The albumin cobalt binding (ACB) test reported by Bar-Or et al. was originally designed to detect ischemia modified albumin (IMA), which contains the modified HSA N-terminal sequence by cleavage of the last two amino acids. In this study, we developed a cobalt albumin binding (CAB) assay to correct the flaws of the ACB test with improving the sensitivity and precision. The newly developed CAB assay easily detects albumin configuration alterations and may be able to be used in developing a quality control method for albumin and its pharmaceutical formulations including albumin injections.


Assuntos
Albuminas/química , Bioensaio/métodos , Cobalto/química , Química Farmacêutica/métodos , Injeções , Ligação Proteica , Sensibilidade e Especificidade
20.
Biochim Biophys Acta ; 1831(4): 709-18, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23246577

RESUMO

µ-Calpain is a calcium-dependent cysteine protease, which is activated by µM concentration of calcium in vitro. Disrupted intracellular calcium homeostasis leads to hyper-activation of µ-calpain. Hyper-activated µ-calpain enhances the accumulation of ß-amyloid peptide by increasing the expression level of ß-secretase (BACE1) and induces hyper-phosphorylation of tau along with the formation of neurofibrillary tangle by mediating p35 cleavage into p25, both of which are the major mechanisms of neurodegeneration in Alzheimer's disease (AD). Hence, inhibition of µ-calpain activity is very important in the treatment and prevention of AD. In this study, conjugated linoleic acid (CLA), an eighteen-carbon unsaturated fatty acid, was discovered as a µ-calpain-specific inhibitor. CLA showed neuroprotective effects against neurotoxins such as H2O2 and Aß1-42 in SH-SY5Y cells, and inhibited Aß oligomerization/fibrillation and Aß-induced Zona Occludens-1 degradation. In addition, CLA decreased the levels of proapoptotic proteins, p35 conversion to p25 and tau phosphorylation. These findings implicate CLA as a new core structure for selective µ-calpain inhibitors with neuroprotective effects. CLA should be further evaluated for its potential use as an AD therapeutic agent.


Assuntos
Doença de Alzheimer/metabolismo , Calpaína/antagonistas & inibidores , Glicoproteínas/farmacologia , Ácidos Linoleicos Conjugados/farmacologia , Fármacos Neuroprotetores/farmacologia , Peptídeos beta-Amiloides/metabolismo , Linhagem Celular Tumoral , Humanos , Peróxido de Hidrogênio/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas tau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...