Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Microbiol Biotechnol ; 34(5): 1109-1118, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38563104

RESUMO

Probiotics, specifically Lacticaseibacillus rhamnosus, have garnered attention for their potential health benefits. This study focuses on evaluating the probiotic properties of candidate probiotics L. rhamnosus IDCC 3201 (3201) using the Caenorhabditis elegans surrogate animal model, a well-established in vivo system for studying host-bacteria interactions. The adhesive ability to the host's gastrointestinal tract is a crucial criterion for selecting potential probiotic bacteria. Our findings demonstrated that 3201 exhibits significantly higher adhesive capabilities compared with Escherichia coli OP50 (OP50), a standard laboratory food source for C. elegans and is comparable with the widely recognized probiotic L. rhamnosus GG (LGG). In lifespan assay, 3201 significantly increased the longevity of C. elegans compared with OP50. In addition, preconditioning with 3201 enhanced C. elegans immune response against four different foodborne pathogenic bacteria. To uncover the molecular basis of these effects, transcriptome analysis elucidated that 3201 modulates specific gene expression related to the innate immune response in C. elegans. C-type lectin-related genes and lysozyme-related genes, crucial components of the immune system, showed significant upregulation after feeding 3201 compared with OP50. These results suggested that preconditioning with 3201 may enhance the immune response against pathogens. Metabolome analysis revealed increased levels of fumaric acid and succinic acid, metabolites of the citric acid cycle, in C. elegans fed with 3201 compared with OP50. Furthermore, there was an increase in the levels of lactic acid, a well-known antimicrobial compound. This rise in lactic acid levels may have contributed to the robust defense mechanisms against pathogens. In conclusion, this study demonstrated the probiotic properties of the candidate probiotic L. rhamnosus IDCC 3201 by using multi-omics analysis.


Assuntos
Caenorhabditis elegans , Lacticaseibacillus rhamnosus , Longevidade , Probióticos , Animais , Caenorhabditis elegans/imunologia , Caenorhabditis elegans/microbiologia , Perfilação da Expressão Gênica , Imunidade Inata , Multiômica
2.
J Anim Sci Technol ; 66(1): 57-78, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38618037

RESUMO

In a global context, bacterial diseases caused by pathogenic bacteria have inflicted sustained damage on both humans and animals. Although antibiotics initially appeared to offer an easy treatment for most bacterial infections, the recent rise of multidrug-resistant bacteria, stemming from antibiotic misuse, has prompted regulatory measures to control antibiotic usage. Consequently, various alternatives to antibiotics are being explored, with a particular focus on bacteriophage (phage) therapy for treating bacterial diseases in animals. Animals are broadly categorized into livestock, closely associated with human dietary habits, and companion animals, which have attracted increasing attention. This study highlights phage therapy cases targeting prominent bacterial strains in various animals. In recent years, research on bacteriophages has gained considerable attention, suggesting a promising avenue for developing alternative substances to antibiotics, particularly crucial for addressing challenging bacterial diseases in the future.

3.
J Anim Sci Technol ; 66(2): 398-411, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38628689

RESUMO

Upregulation of the nutritional value of feed is the major target of various studies in the livestock industry, and dietary enzyme supplementation could aid in digesting the nondegrading nutrients of grains in feed ingredients. Dried distillers' grains with solubles (DDGS) is a byproduct of the fermentation process in the beverage industry and can be used as a large supply source of fiber in feed. Therefore, we conducted an experiment with male broiler chickens to investigate the effect of various types of enzymes on DDGS and compare the efficacy of single enzyme and multienzyme complexes on growth performance and gut environments in broiler chickens. We used 420 1-day-old broiler chickens (Ross 308), and they were allotted into 4 dietary treatments with seven replications (CON, corn-soybean meal [SBM] diet; NC, DDGS supplemented diet; SE, 0.05 % of mannanase supplemented DDGS-based diet; MC, 0.10% of multienzyme complex (mannanase and xylanase, glucanase) supplemented DDGS-based diet. The dietary exogenous enzyme in the DDGS-supplemented diet could improve growth performance as much as the growth of the control group, and digestibility of dry matter, crude protein, and gross energy were significantly increased by enzyme addition in groups of chicks fed DDGS-supplementation diet. Moreover, the populations of pathogenic bacteria, coliforms, and Bacteroidetes were significantly decreased by enzyme supplementation, which might lead to improved gut mucus-secreting cells and inflammatory cytokines in the jejunum. Collectively, dietary single enzyme and multienzyme complexes could improve gut environments, including intestinal immune responses and gut microbial population, and lead to improvement of growth performance in broiler chickens.

4.
Sci Total Environ ; 922: 171208, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38408652

RESUMO

Salmonella Typhimurium is a highly lethal pathogenic bacterium in weaned piglets, causing significant treatment costs and economic losses in the swine industry. Additionally, due to its ability to induce zoonotic diseases, resulting in harm to humans through the transmission of the pathogen from pork, it presents a serious public health issue. Bacteriophages (phages), viruses that infect specific bacterial strains, have been proposed as an alternative to antibiotics for controlling pathogenic bacteria. In this study, we isolated SLAM_phiST1N3, a phage infecting a multidrug-resistant (MDR) S. Typhimurium wild-type strain isolated from diseased pigs. First, comparative genomics and phylogenetic analysis revealed that SLAM_phiST1N3 belongs to the Cornellvirus genus. Moreover, utilizing a novel classification approach introduced in this study, SLAM_phiST1N3 was classified at the species level. Host range experiments demonstrated that SLAM_phiST1N3 did not infect other pathogenic bacteria or probiotics derived from pigs or other livestock. While complete eradication of Salmonella was not achievable in the liquid inhibition assay, surprisingly, we succeeded in largely eliminating Salmonella in the FIMM analysis, a gut simulation system using weaned piglet feces. Furthermore, using the C. elegans model, we showcased the potential of SLAM_phiST1N3 to prevent S. Typhimurium infection in living organisms. In addition, it was confirmed that bacterial control could be achieved when phage was applied to Salmonella-contaminated pork. pH and temperature stability experiments demonstrated that SLAM_phiST1N3 can endure swine industry processes and digestive conditions. In conclusion, SLAM_phiST1N3 demonstrates potential environmental impact as a substance for Salmonella prevention across various aspects of the swine industry chain.


Assuntos
Bacteriófagos , Salmonelose Animal , Fagos de Salmonella , Suínos , Animais , Humanos , Salmonella typhimurium , Bacteriófagos/fisiologia , Caenorhabditis elegans , Filogenia , Salmonelose Animal/prevenção & controle , Salmonelose Animal/microbiologia , Fagos de Salmonella/fisiologia
5.
Food Sci Anim Resour ; 43(5): 723-750, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37701742

RESUMO

The gut microbiome is critical in human health, and various dietary factors influence its composition and function. Among these factors, animal products, such as meat, dairy, and eggs, represent crucial sources of essential nutrients for the gut microbiome. However, the correlation and characteristics of livestock consumption with the gut microbiome remain poorly understood. This review aimed to delineate the distinct effects of meat, dairy, and egg products on gut microbiome composition and function. Based on the previous reports, the impact of red meat, white meat, and processed meat consumption on the gut microbiome differs from that of milk, yogurt, cheese, or egg products. In particular, we have focused on animal-originated proteins, a significant nutrient in each livestock product, and revealed that the major proteins in each food elicit diverse effects on the gut microbiome. Collectively, this review highlights the need for further insights into the interactions and mechanisms underlying the impact of animal products on the gut microbiome. A deeper understanding of these interactions would be beneficial in elucidating the development of dietary interventions to prevent and treat diseases linked to the gut microbiome.

6.
Food Sci Anim Resour ; 43(4): 659-673, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37484007

RESUMO

Compared to infant formula, breast milk is the best source of nutrition for infants; it not only improves the neonatal intestinal function, but also regulates the immune system and gut microbiota composition. However, probiotic-fortified infant formula may further enhance the infant gut environment by overcoming the limitations of traditional infant formula. We investigated the probiotic formula administration for one month by comparing 118 Korean infants into the following three groups: infants in each group fed with breast milk (50), probiotic formula (35), or placebo formula-fed group (33). Probiotic formula improved stool consistency and defecation frequency compared to placebo formula-fed group. The probiotic formula helped maintaining the level of secretory immunoglobulin A (sIgA), which had remarkably decreased over time in placebo formula-fed infants (compared to weeks 0 and 4). Moreover, probiotic formula decreased the acidity of stool and considerably increased the butyrate concentration. Furthermore, the fecal microbiota of each group was evaluated at weeks 0 and 4. The microbial composition was distinct between each groups, and the abundance of health-promoting bacteria increased in the probiotic formula compared to the placebo formula-fed group. In summary, supplementation of probiotic infant formula can help optimize the infant gut environment, microbial composition, and metabolic activity of the microbiota, mimicking those of breast milk.

7.
Food Sci Anim Resour ; 41(3): 497-508, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34017957

RESUMO

This study aimed to assess the anti-inflammatory effect of Lactobacillus casei 3260 (LC) alone and LC-fermented Gleditsia sinensis thorn (GST) extract in mouse model of type II collagen induced rheumatoid arthritis (RA). In our previous work, we confirmed the anti-inflammatory effects of LC and GST against LPS-induced inflammation in vitro. In this study, LC and GST were fermented and their effects were assessed in an animal model of RA. Both LC and fermented GST (fGST) treatment reduced mice serum nitrite and total cholesterol and triggered myeloperoxidase (MPO) activity. In addition, both LC and fGST reduced inflammation-related serum biomarkers such as tumor necrosis factor-α, interleukin (IL)-6, IL-17, and IL-1ß. As per the morphological analysis, both LC and fGST protected hind paw joints against RA, and its related mRNA markers improved. Finally, arthritis scores were measured as an indicator of RA of the whole experimental period; the scores suggested that both LC and fGST protect against collagen-induced RA-related inflammation in a mouse model.

8.
Epilepsy Res ; 174: 106668, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34020148

RESUMO

OBJECTIVE: We aimed to maximize the efficacy of both ketogenic diet (KD) and other treatments to protect brain from acute seizure. METHODS: L. fermentum MSK 408 strain, galactooligosaccharide (GOS), and L. fermentum MSK 408 with GOS were administered with two different diets for 8 weeks. To reveal the relationships among gut microbiota, fecal short-chain fatty acids (SCFAs) and brain related action against pentylenetetrazole (PTZ)-induced kindling, qPCR, NGS, and GC-MS analyses were used. RESULTS: KD administration significantly reduced PTZ-induced seizure through reducing cell damage in the specific part of the brain; this effect was not interrupted by co-administration of synbiotics. Additionally, the synbiotic-treated normal diet (ND) group showed reduced seizure-related scores. SCFA concentrations of both KDs and ND with synbiotics (NDS) were dramatically reduced compared to those with NDs. Interestingly, NDS group showed independently different SCFAs ratios compared to both ND and KD group, possibly related to a reduction in seizure symptoms compared with that by KD groups. The gut microbiota modulation by KD suggested that the gut microbiota aids the host in generating energy, thus increase the usage of SCFAs such as butyrate and acetate. SIGNIFICANCE: The results suggest that KD could reduce PTZ-induced seizures through modulating various factors such as the neuroendocrine system, brain protection, gut microbiota, fecal SCFAs, and gene expression in the gut and brain. Additionally, synbiotic treatment with KD could be a better method to reduce the side effects of KD without interrupting its anti-seizure effect. However, ND with synbiotics seizure reducing effect requires further analysis.


Assuntos
Dieta Cetogênica , Fármacos Neuroprotetores , Simbióticos , Animais , Dieta Cetogênica/métodos , Modelos Animais de Doenças , Camundongos , Fármacos Neuroprotetores/uso terapêutico , Pentilenotetrazol/toxicidade , Convulsões/induzido quimicamente , Convulsões/prevenção & controle
9.
Epilepsy Res ; 169: 106506, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33276243

RESUMO

PURPOSE: Seizures are a threat to the host brain and body and can even cause death in epileptic children. Ketogenic diet (KD) is suggested for children suffering from epileptic seizures and has been investigated for its anti-seizure effect. However, the relationships between KD and gut microbiota (GM) is not yet been deeply understood. Herein, we investigated the anti-seizure effect by administering KD and a lactic acid bacteria (LAB) in murine model of chemically induced seizures. We hypothesized that a single Lactobacillus fermentum MSK 408 (MSK 408) strain with or without KD may exert a neuroprotection by modulating host gut microbiota. METHOD: We performed animal study using pentylenetetrazole (PTZ) to induce seizure. Thirty 3-week-old male Institute of Cancer research (ICR) mice were divided in six groups, Normal diet (ND), ND + PTZ, ND + PTZ + LAB, KD, KD + PTZ, and KD + PTZ. Based on our previous study, 4:1 KD and selected MSK 408 strain was orally gavaged (4 × 109 CFU/mL) with both diets for 4 weeks. PTZ (40 mg/kg) was injected intraperitoneally 30 min before euthanization. RESULTS: Compared to ND, KD significantly reduced the seizure frequency. Administration of MSK 408 with both ND and KD for 4 weeks restored serum lipid profile and tight junction protein mRNA expression of the gut and brain. Additionally, PCoA revealed that MSK 408 independently affected fecal short chain fatty acid (SCFA) content via gut microbiota (GM) modulation. PICRUSt suggested that the modulation of microbiota by KD and MSK 408 led to increased GABA (gamma-aminobutyric acid) metabolism. SIGNIFICANCE: Our findings suggest that MSK 408 strain can be consumed with KD as supplement without interfering the anti-seizure action of KD, and may improve the serum lipid profile, and brain barrier function via gut microbiota and SCFA modulation.


Assuntos
Dieta Cetogênica , Microbioma Gastrointestinal , Limosilactobacillus fermentum , Convulsões , Animais , Modelos Animais de Doenças , Lipídeos , Masculino , Camundongos , Pentilenotetrazol/toxicidade , Convulsões/induzido quimicamente
10.
Food Res Int ; 116: 1173-1182, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30716903

RESUMO

The fecal morphology, defecation frequency, bowel function, intestinal motility, and fecal bacterial composition were evaluated to investigate the laxative effect of probiotic chocolate containing Streptococcus thermophilus MG510 and Lactobacillus plantarum LRCC5193 (LYC) on loperamide-induced constipated rats. Daily oral administration of LYC in constipated rats for two weeks was shown to significantly increase (n = 14) the defecation frequency, fecal moisture content, and relative abundance of fecal Lactobacillus and Faecalibacterium prausnitzii. Moreover, histological analysis of the distal colon of constipated rats revealed that LYC treatment can also increase the thickness of the colonic mucosa and muscle layers, and crypt of Lieberkühn. LYC also significantly increased (n = 5) the intestinal motility and modulated (n = 9) mRNA expression levels of colonic ZO-1 and Cldn-1 in the constipated rats. Altogether, these results demonstrate that probiotic chocolate has potential as a dietary adjunct for the treatment of constipation.


Assuntos
Chocolate/microbiologia , Constipação Intestinal/induzido quimicamente , Constipação Intestinal/tratamento farmacológico , Laxantes/farmacologia , Loperamida/efeitos adversos , Probióticos/uso terapêutico , Animais , Peso Corporal , Claudina-1/metabolismo , Colo/efeitos dos fármacos , Colo/patologia , Defecação/efeitos dos fármacos , Faecalibacterium prausnitzii/efeitos dos fármacos , Fezes/microbiologia , Feminino , Motilidade Gastrointestinal/efeitos dos fármacos , Íleo/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Lactobacillus plantarum/efeitos dos fármacos , Lactobacillus plantarum/fisiologia , Ratos , Ratos Sprague-Dawley , Streptococcus thermophilus/efeitos dos fármacos , Streptococcus thermophilus/fisiologia , Proteína da Zônula de Oclusão-1/metabolismo
11.
J Sci Food Agric ; 99(6): 3045-3056, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30488458

RESUMO

BACKGROUND: This study investigated the in vivo prophylactic effect of probiotic chocolate on constipation. Rats were administered chocolate containing 2.5 × 1010 CFU g-1 of probiotics daily for 4 weeks and treated with loperamide (5 mg kg-1 ) daily at the fourth week of treatment. RESULTS: Probiotic chocolate treatment significantly (P < 0.05) increased the intestinal motility, colon length, fecal moisture content and number of excreted fecal pellets in constipated rats. Moreover, quantitative real-time polymerase chain reaction data and histological images also revealed that both probiotic chocolate LYC and BB12 treatments were capable of upregulating the mRNA expression levels of colonic ZO-1, occludin and AQP8, leading to the maintenance of the defensive barrier function in the constipated rats compared with the negative controls. Interestingly, these treatments also modulated gut bacterial populations by increasing the abundance levels of Lactobacillus and Bifidobacterium, as well as reducing the abundance level of Enterobacteriaceae. CONCLUSION: The present study demonstrated that probiotic chocolate LYC and BB12 could potentially be used as alternative agents for prophylactic constipation. © 2018 Society of Chemical Industry.


Assuntos
Chocolate/microbiologia , Constipação Intestinal/prevenção & controle , Intestinos/fisiopatologia , Probióticos/administração & dosagem , Animais , Bifidobacterium animalis/química , Bifidobacterium animalis/metabolismo , Chocolate/análise , Constipação Intestinal/fisiopatologia , Defecação/efeitos dos fármacos , Fezes/microbiologia , Feminino , Humanos , Lactobacillus plantarum/química , Lactobacillus plantarum/fisiologia , Probióticos/química , Ratos , Ratos Sprague-Dawley , Streptococcus thermophilus/química , Streptococcus thermophilus/fisiologia
12.
Korean J Food Sci Anim Resour ; 37(6): 931-939, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29725216

RESUMO

Alcoholic liver disease (ALD) is a complex multifaceted disease that involves oxidative stress and inflammation as the key mediators. Despite decades of intensive research, there are no FDA-approved therapies, and/or no effective cure is yet available. Probiotics have received increasing attention in the past few years due to their well-documented gastrointestinal health-promoting effects. Interestingly, emerging studies have suggested that certain probiotics may offer benefits beyond the gut. Lactobacillus fermentum LA12 has been previously demonstrated to play a role in inflammatory-related disease. However, the possible protective effect of L. fermentum LA12 on ALD still remain to be explored. Thus, the aim of this study was to evaluate the possible protective effect of L. fermentum LA12 on alcohol-induced gut barrier dysfunction and liver damage in a rat model of alcoholic steatohepatitis (ASH). Daily oral administration of L. fermentum LA12 in rat model of ASH for four weeks was shown to significantly reduced intestinal nitric oxide production and hyperpermeability. Moreover, small intestinal histological- and qRT-PCR analysis further revealed that L. fermentum LA12 treatment was capable of up-regulating the mRNA expression levels of tight junction proteins, thereby stimulating the restitution of barrier structure and function. Serum and hepatic analyses also revealed that the restoration of epithelial barrier function may prevent the leakage of endotoxin into the blood, subsequently improve liver function and hepatic steatosis in the L. fermentum LA12-treated rats. Altogether, results in this study suggest that L. fermentum LA12 may be used as a dietary adjunct for the prevention and treatment of ASH.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...